Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 405
1.
Heliyon ; 10(10): e30391, 2024 May 30.
Article En | MEDLINE | ID: mdl-38765052

Background: Influenza and COVID-19 patients share similar features and outcomes amongst adults. However, the difference between these diseases is not explored in paediatric age group especially in terms of inflammatory markers, coagulation profile and outcomes. Hence, we did this review to compare the inflammatory, coagulation features and outcomes between influenza and COVID-19 infected children. Methods: Literature search was done in PubMed Central, Scopus, EMBASE, CINAHL, Cochrane library, Google Scholar & ScienceDirect from November 2019 to May 2022. Risk of bias assessment was done through Newcastle Ottawa scale. Meta-analysis was done using random-effects model and the final pooled estimate was reported as pooled odds ratio (OR) or standardized mean difference (SMD) along with 95 % confidence interval (CI) depending on the type of outcome. Results: About 16 studies were included with most studies having higher risk of bias. Influenza paediatric patients had significantly higher erythrocyte sedimentation rate (ESR) (pooled SMD = 0.60; 95%CI: 0.30-0.91; I2 = 0 %), lactate dehydrogenase (LDH) (pooled SMD = 2.01; 95%CI: 0.37-3.66; I2 = 98.4 %) and prothrombin time (PT) (pooled SMD = 2.12; 95%CI: 0.44-3.80; I2 = 98.3 %) when compared to paediatric COVID-19 patients. There was no significant difference in terms of features like CRP, procalcitonin, serum albumin, aPTT, mortality and need for mechanical ventilation. Conclusion: Inflammatory markers like ESR, LDH and PT was significantly higher in influenza patients when compared to COVID-19 in children, while rest of the markers and adverse clinical outcomes were similar between both the groups. Identification of these biomarkers has helped in understanding the distinctness of COVID-19 and influenza virus and develop better management strategies.

2.
Animals (Basel) ; 14(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791630

The golden cuttlefish (Sepia esculenta) is an important cephalopod species with a lifespan of approximately one year. The species plays a crucial role in marine ecological support services and is commercially valuable in fisheries. In the seas around China, this species has emerged as the main target for cuttlefish fisheries, replacing Sepiella maindroni since the 1990s. Variations in oceanographic conditions associated with global warming could significantly impact the temporal-spatial distribution of the species. In this study, we performed bottom trawling surveys with four cruises during 2018-2019 in the East China Sea region to determine the current resource status and seasonal-spatial variations in S. esculenta. We found that the average individual weight (AIW) values were 4.87 and 519.00 g/ind at stations located at 30.50° N, 124.00° E and 30.50° N, 124.50° E, respectively, with the aggregation of larvae and parent groups in spring. The species was not distributed north of 32.00° N in summer. The catch per unit effort by weight (CPUEw) value decreased in the order of 2772.50→2575.20→503.29→124.36 g/h, corresponding to latitudes of 34.50° N→34.00° N→33.50° N→32.50° N 121.50° E in autumn. The most suitable fishing areas were the south of the East China Sea region in spring; the south of the East China Sea region extending to the center and outer parts of the East China Sea region in summer; the south of the Yellow Sea close to the Haizhou Bay fishing ground and the forbidden fishing line region of the Lusi and Dasha fishing grounds in autumn; and the south and center of the East China Sea region in winter. The most suitable sea bottom temperature (SBT) values from spring to winter were 14.76-20.53 °C, 19.54-22.98 °C, 11.79-17.64 °C, and 16.94-20.36 °C, respectively. The most suitable sea bottom salinity (SBS) values were 31.53-34.80‱ in spring, 32.95-34.68‱ in summer, 31.51-34.77‱ in autumn, and 33.82-34.51‱ in winter. We concluded the following: (1) the southern and northern areas of the East China Sea region are spawning and nursery grounds, respectively, in spring; (2) the central distribution is located at a latitude of 28.00° N in autumn and winter; and (3) the southern area of the Yangtze River to the north is a spawning ground in spring, and the areas located at 29.00-34.50° N, 124.00-124.50° E, and 28.00-30.50° N, 125.50-126.50° E are nursery grounds. The results of this study provide useful guidance for appropriate fisheries management, thereby avoiding a collapse in the S. esculenta population, which has been experienced in other species in this area.

3.
Bioorg Chem ; 148: 107476, 2024 May 19.
Article En | MEDLINE | ID: mdl-38788368

Depression is a debilitating mental illness that poses a serious threat to human health. Nitric Oxide (NO), as an important gasotransmitter, is closely associated with the pathogenesis of depressive disorders. Effective monitoring of NO fluctuation is beneficial for the diagnosis of depression and therapy assessment of antidepressants. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with depression diseases. Herein, we developed a NIR dye TJ730-based fluorescent probe TJ730-Golgi-NO incorporating benzenesulfonamide as a Golgi-targeted moiety and the thiosemicarbazide group for NO detection. The probe exhibited turn-on fluorescence ability and a large Stokes shift of 158 nm, which shows high sensitivity, selectivity, and rapid response (<1 min) for NO detection. TJ730-Golgi-NO could detect exogenous and endogenous NO in cells stimulated by Glu and LPS, and target Golgi apparatus. Moreover, we disclose a significant increase of NO in the depression model and a weak fluorescence evidenced in the fluoxetine-treated depression mice. This study provides a competent tool for studying the function of NO and helping improve the effective treatment of depression diseases.

4.
Adv Mater ; : e2400572, 2024 May 24.
Article En | MEDLINE | ID: mdl-38794833

Beyond optimizing electronic energy levels, the modulation of the electronic spin configuration is an effective strategy, often overlooked, to boost activity and selectivity in a range of catalytic reactions, including the oxygen evolution reaction (OER). This electronic spin modulation is frequently accomplished using external magnetic fields, which makes it impractical for real applications. Herein, spin modulation is achieved by engineering Ni/MnFe2O4 heterojunctions, whose surface is reconstructed into NiOOH/MnFeOOH during the OER. NiOOH/MnFeOOH shows a high spin state of Ni, which regulates the OH- and O2 adsorption energy and enables spin alignment of oxygen intermediates. As a result, NiOOH/MnFeOOH electrocatalysts provide excellent OER performance with an overpotential of 261 mV at 10 mA/cm2. Besides, rechargeable zinc-air batteries based on Ni/MnFe2O4 show a high open circuit potential of 1.56 V and excellent stability for more than 1000 cycles. This outstanding performance is rationalized using density functional theory calculations, which show that the optimal spin state of both Ni active sites and oxygen intermediates facilitates spin-selected charge transport, optimizes the reaction kinetics, and decreases the energy barrier to the evolution of oxygen. This study provides valuable insight into spin polarization modulation by heterojunctions enabling the design of next-generation OER catalysts with boosted performance. This article is protected by copyright. All rights reserved.

5.
Nat Commun ; 15(1): 4583, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811607

Molecular computing is an emerging paradigm that plays an essential role in data storage, bio-computation, and clinical diagnosis with the future trends of more efficient computing scheme, higher modularity with scaled-up circuity and stronger tolerance of corrupted inputs in a complex environment. Towards these goals, we construct a spatially localized, DNA integrated circuits-based classifier (DNA IC-CLA) that can perform neuromorphic architecture-based computation at a molecular level for medical diagnosis. The DNA-based classifier employs a two-dimensional DNA origami as the framework and localized processing modules as the in-frame computing core to execute arithmetic operations (e.g. multiplication, addition, subtraction) for efficient linear classification of complex patterns of miRNA inputs. We demonstrate that the DNA IC-CLA enables accurate cancer diagnosis in a faster (about 3 h) and more effective manner in synthetic and clinical samples compared to those of the traditional freely diffusible DNA circuits. We believe that this all-in-one DNA-based classifier can exhibit more applications in biocomputing in cells and medical diagnostics.


DNA , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/diagnosis , Neoplasms/classification , DNA/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Computers, Molecular , Algorithms , Computational Biology/methods
6.
Aust Crit Care ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38762342

AIM: The aim of this study was to test whether rumination and negative affectivity mediate the relationship between work-family conflict and nurse-assessed patient safety among intensive care unit nurses. BACKGROUND: Most intensive care unit nurses experience work-family conflicts that jeopardise patient safety. Although prior studies have explored the effect of work-family conflict on patient safety, few have investigated whether work-family conflict is associated with patient safety through rumination and negative affectivity among intensive care unit nurses. DESIGN: Cross-sectional study. METHODS: This study included 209 intensive care unit nurses from five general hospitals. The Work-Family Conflict Scale, the Ruminative Response Scale, the Positive and Negative Affect Schedule-Negative Affectivity, and three items indicating nurses' perception of overall patient safety were used to gather data. Associations between work-family conflict, rumination, negative affectivity, and nurse-assessed patient safety were assessed using correlation and serial multiple mediation analysis. RESULTS: Work-family conflict, rumination, negative affectivity, and nurse-assessed patient safety were significantly correlated (p < 0.01). Work-family conflict can have not only a direct negative impact on the nurse-assessed patient safety (effect = -0.0234; standard error [SE] = 0.0116; 95% confidence interval [CI]: lower limit [LL] = -0.0464, upper limit [UL] = -0.0005) but also an indirect impact on nurse-assessed patient safety through three paths: the independent mediating role of rumination (effect = -0.0118; SE = 0.0063; 95% CI: LL = -0.0251, UL = -0.0006), the independent mediating role of negative affectivity (effect = -0.0055; SE = 0.0039; 95% CI: LL = -0.0153, UL = -0.0001), and the chain-mediating role of rumination and negative affectivity (effect = -0.0078; SE = 0.0031; 95% CI: LL = -0.0152, UL = -0.0027). CONCLUSION: Our findings indicated that work-family conflict could influence nurse-assessed patient safety through increasing rumination and negative affectivity among intensive care unit nurses. Based on the results, interventions aimed at decreasing work-family conflict would be beneficial for intensive care unit nurses' emotional stability and patient safety.

7.
Front Microbiol ; 15: 1349674, 2024.
Article En | MEDLINE | ID: mdl-38559353

Introduction: Atopic dermatitis (AD) is one of the most common inflammatory skin diseases. Skin microecological imbalance is an important factor in the pathogenesis of AD, but the underlying mechanism of its interaction with humans remains unclear. Methods: 16S rRNA gene sequencing was conducted to reveal the skin microbiota dynamics. Changes in skin metabolites were tracked by LC-MS metabolomics. We then explored the potential mechanism of interaction by analyzing the correlation between skin bacterial communities and metabolites in corresponding skin-associated samples. Results: Samples from 18 AD patients and 18 healthy volunteers (HVs) were subjected to 16S rRNA gene sequencing and LC-MS metabolomics. AD patients had dysbiosis of the skin bacterial community with decreased species richness and evenness. The relative abundance of the genus Staphylococcus increased significantly in AD, while the abundances of the genera Propionibacterium and Brevundimonas decreased significantly. The relative abundance of the genera Staphylococcus in healthy females was significantly higher than those in healthy males, while it showed no difference in AD patients with or without lesions. The effects of AD status, sex and the presence or absence of rashes on the number of differentially abundant metabolites per capita were successively reduced. Multiple metabolites involved in purine metabolism and phenylalanine metabolism pathways (such as xanthosine/xanthine and L-phenylalanine/trans-cinnamate) were increased in AD patients. These trends were much more obvious between female AD patients and female HVs. Spearman correlation analysis revealed that the genus Staphylococcus was positively correlated with various compounds involved in phenylalanine metabolism and purine metabolic pathways. The genera Brevundimonas and Lactobacillus were negatively correlated with various compounds involved in purine metabolism, phenylalanine metabolism and sphingolipid signaling pathways. Discussion: We suggest that purine metabolism and phenylalanine metabolism pathway disorders may play a certain role in the pathogenic mechanism of Staphylococcus aureus in AD. We also found that females are more likely to be colonized by the genus Staphylococcus than males. Differentially abundant metabolites involved in purine metabolism and phenylalanine metabolism pathways were more obvious in female. However, we should notice that the metabolites we detected do not necessarily derived from microbes, they may also origin from the host.

8.
Sci Adv ; 10(14): eadn3329, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578999

Characterizing the relative onset time, strength, and duration of molecular signals is critical for understanding the operation of signal transduction and genetic regulatory networks. However, detecting multiple such molecules as they are produced and then quickly consumed is challenging. A MER can encode information about transient molecular events as stable DNA sequences and are amenable to downstream sequencing or other analysis. Here, we report the development of a de novo molecular event recorder that processes information using a strand displacement reaction network and encodes the information using the primer exchange reaction, which can be decoded and quantified by DNA sequencing. The event recorder was able to classify the order at which different molecular signals appeared in time with 88% accuracy, the concentrations with 100% accuracy, and the duration with 75% accuracy. This simultaneous and highly programmable multiparameter recording could enable the large-scale deciphering of molecular events such as within dynamic reaction environments, living cells, or tissues.


Gene Regulatory Networks , Recombination, Genetic , DNA/genetics
9.
Cancer Nurs ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598755

BACKGROUND: Demoralization is a psychological syndrome that is highly prevalent in patients with cancer and detrimental to individuals' physical and mental health. To explore effective intervention, we first determined the relationships between locus of control, coping strategies, symptom burden, and demoralization. OBJECTIVE: The aim of this study was to determine the relationship between symptom burden, locus of control, coping strategies, and demoralization in patients with cancer. METHODS: In this descriptive-correlational study, 273 valid patients were selected with convenience sampling method from a hospital in China. Data were collected using the Chinese version of the M.D. Anderson Symptom Inventory, the Chinese version of the Multidimensional Health Locus of Control Scale, the Chinese version of the Medical Coping Modes Questionnaire, and the Mandarin version of the Demoralization Scale. Data were analyzed using descriptive and inferential statistics using SPSS and AMOS. RESULTS: A total of 115 patients (42.12%) experienced clinical demoralization (Mandarin version of the Demoralization Scale > 30). Symptom burden (ß = 0.295, P < .001), confrontation (ß = -0.117, P = .028), and resignation (ß = 0.456, P < .001) had direct effects on demoralization. Symptom burden also had an indirect effect on demoralization through the mediating role of resignation (ß = 0.026, P = .002). Meanwhile, locus of control can affect demoralization entirely through the indirect mediating role of coping strategies (chance locus of control via resignation [ß = 0.138, P < .01], powerful locus of control via confrontation [ß = -0.017, P < .05]). CONCLUSIONS: Symptom burden affects demoralization not only directly but also indirectly. Coping strategies play an important mediating role between symptom burden, locus of control, and demoralization in patients with cancer. IMPLICATIONS FOR PRACTICE: It is urgent to screen demoralization and identify patients with high symptom burden, maladaptive locus of control, or coping strategies. For the patients targeted, a more comprehensive and systematic approach to symptom management and more appropriate guidance related to adaptive coping strategies are needed.

10.
Talanta ; 274: 126004, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38564824

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.


Fluorescent Dyes , Reactive Nitrogen Species , Reactive Oxygen Species , Rhodamines , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Reactive Nitrogen Species/analysis , Humans , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis , Optical Imaging , Animals , Sulfur/chemistry , Sulfur/analysis
11.
Cancer Lett ; 591: 216873, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604313

Oncogenic RAS and RAF signaling has been implicated in contributing to radioresistance in pancreatic and thyroid cancers. In this study, we sought to better clarify molecular mechanisms contributing to this effect. We discovered that miRNA 296-3p (miR-296-3p) is significantly correlated with radiosensitivity in a panel of pancreatic cancer cells, and miR-296-3p is highly expressed in normal cells, but low in cancer cell lines. Elevated expression of miR-296-3p increases radiosensitization while decreasing the expression of the DNA repair enzyme RAD18 in both pancreatic and thyroid cancer cells. RAD18 is overexpressed in both pancreatic and thyroid tumors compared to matched normal controls, and high expression of RAD18 in tumors is associated with poor prognostic features. Modulating the expression of mutant KRAS in pancreatic cancer cells or mutant BRAF in thyroid cancer cells demonstrates a tight regulation of RAD18 expression in both cancer types. Depletion of RAD18 results in DNA damage and radiation-induced cell death. Importantly, RAD18 depletion in combination with radiotherapy results in marked and sustained tumor regression in KRAS mutant pancreatic cancer orthotopic tumors and BRAF mutant thyroid heterotopic tumors. Overall, our findings identify a novel coordinated RAS/RAF-miR-296-3p-RAD18 signaling network in pancreatic and thyroid cancer cells, which leads to enhanced radioresistance.


DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , MicroRNAs , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Radiation Tolerance , Signal Transduction , Thyroid Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Radiation Tolerance/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins B-raf/genetics , Mice, Nude , Mutation , DNA Damage , Xenograft Model Antitumor Assays , ras Proteins/genetics , ras Proteins/metabolism , Transfection
12.
Front Immunol ; 15: 1348189, 2024.
Article En | MEDLINE | ID: mdl-38590525

Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.


Biomedical Research , Drug-Related Side Effects and Adverse Reactions , Neoplasms , Aged , Humans , Immune Checkpoint Inhibitors/therapeutic use , Aging , Neoplasms/drug therapy
13.
Front Cardiovasc Med ; 11: 1323918, 2024.
Article En | MEDLINE | ID: mdl-38433757

Background: With the rapid development of technology, artificial intelligence (AI) has been widely used in the diagnosis and prognosis prediction of a variety of diseases, including cardiovascular disease. Facts have proved that AI has broad application prospects in rapid and accurate diagnosis. Objective: This study mainly summarizes the research on the application of AI in the field of cardiovascular disease through bibliometric analysis and explores possible future research hotpots. Methods: The articles and reviews regarding application of AI in cardiovascular disease between 2000 and 2023 were selected from Web of Science Core Collection on 30 December 2023. Microsoft Excel 2019 was applied to analyze the targeted variables. VOSviewer (version 1.6.16), Citespace (version 6.2.R2), and a widely used online bibliometric platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references, and keywords in this field. Results: A total of 4,611 articles were selected in this study. AI-related research on cardiovascular disease increased exponentially in recent years, of which the USA was the most productive country with 1,360 publications, and had close cooperation with many countries. The most productive institutions and researchers were the Cedar sinai medical center and Acharya, Ur. However, the cooperation among most institutions or researchers was not close even if the high research outputs. Circulation is the journal with the largest number of publications in this field. The most important keywords are "classification", "diagnosis", and "risk". Meanwhile, the current research hotpots were "late gadolinium enhancement" and "carotid ultrasound". Conclusions: AI has broad application prospects in cardiovascular disease, and a growing number of scholars are devoted to AI-related research on cardiovascular disease. Cardiovascular imaging techniques and the selection of appropriate algorithms represent the most extensively studied areas, and a considerable boost in these areas is predicted in the coming years.

14.
BMC Endocr Disord ; 24(1): 30, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443895

BACKGROUND: The association between the triglyceride-glucose (TyG) index and arterial stiffness in individuals with normoglycaemia remains unclear. We aimed to evaluate the relationship between the TyG index and arterial stiffness in Japanese individuals with normoglycaemia, providing additional evidence for predicting early arterial stiffness. METHODS: This study included 15,453 adults who participated in the NAGALA Physical Examination Project of the Murakami Memorial Hospital in Gifu, Japan, from 2004 to 2015. Data on clinical demographic characteristics and serum biomarker levels were collected. The TyG index was calculated from the logarithmic transformation of fasting triglycerides multiplied by fasting glucose, and arterial stiffness was measured using the estimated pulse wave velocity calculated based on age and mean blood pressure. The association between the TyG index and arterial stiffness was analysed using a logistic regression model. RESULTS: The prevalence of arterial stiffness was 3.2% (500/15,453). After adjusting for all covariates, the TyG index was positively associated with arterial stiffness as a continuous variable (adjusted odds ratio (OR) = 1.86; 95% Confidence Interval = 1.45-2.39; P<0.001). Using the quartile as the cutoff point, a regression analysis was performed for arterial stiffness when the TyG index was converted into a categorical variable. After adjusting for all covariates, the OR showed an upward trend; the trend test was P<0.001. Subgroup analysis revealed a positive association between the TyG index and arterial stiffness in Japanese individuals with normoglycaemia and different characteristics. CONCLUSION: The TyG index in Japanese individuals with normoglycaemia is significantly correlated with arterial stiffness, and the TyG index may be a predictor of early arterial stiffness.


Pulse Wave Analysis , Vascular Stiffness , Adult , Humans , Cross-Sectional Studies , Japan/epidemiology , Glucose , Triglycerides
15.
Cancer Med ; 13(4): e7080, 2024 Feb.
Article En | MEDLINE | ID: mdl-38457254

BACKGROUND: Immune checkpoint inhibitors (ICIs) combined with chemotherapy have been recommended as the standard treatment for advanced NSCLC patients without driver-gene mutations. However, there are different genetic characteristics and biological traits of tumors between non-East Asian (nEA) and East Asian (EA) patients with NSCLC, which may contribute to differences in the efficacy of ICIs in different ethnic populations. Previous findings regarding differences in the efficacy of ICIs among ethnic groups have been inconsistent. Therefore, we performed a meta-analysis by collecting published data to investigate the clinical outcomes of ICIs for EA NSCLC patients compared to nEA patients. METHODS: Overall survival (OS) and progression-free survival (PFS) were used to access the difference in survival outcomes between the two populations. Subgroup analyses were performed based on the line of ICIs, the use of ICIs alone or in combination, and the type of ICIs. RESULTS: A total of 9826 NSCLC patients from 21 randomized controlled trials (RCTs) with 4064 EAs were included, which involved PD-1, PD-L1, and CTLA-4 inhibitors. EA NSCLC patients who received ICIs-based therapy were associated with significantly improved survival benefits in OS (p = 0.02) compared with nEA patients. Subgroup analysis indicated that EA patients receiving first-line ICIs showed significantly superior OS compared with nEA patients (p = 0.007). Chemo-ICIs treatment showed significant advantages in terms of OS (p = 0.002) and PFS (p = 0.02) among EA patients compared to nEA patients. In addition, PD-1 inhibitors were associated with improved OS among both EA patients and nEA patients compared with PD-L1 inhibitors. CONCLUSION: EA NSCLC patients who received ICIs-based therapy were associated with significantly improved survival benefits compared with nEA NSCLC patients. Earlier intervention with ICIs and combination treatment was more recommended for EA NSCLC patients. Moreover, PD-1 inhibitors are associated with prolonged survival among both EA and nEA patients.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , East Asian People , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Lung Neoplasms/drug therapy
16.
Phytomedicine ; 128: 155411, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518638

BACKGROUND: Emodin-8-O-ß-D-glucopyranoside (Em8G) is an active ingredient of traditional Chinese medicine Rhei Radix et Rhizoma and Polygonum multiflorum Thunb.. And it caused hepatotoxicity, while the underlying mechanism was not clear yet. PURPOSE: We aimed to explore the detrimental effects of Em8G on the zebrafish liver through the metabolome and transcriptome integrated analysis. STUDY DESIGN AND METHODS: In this study, zebrafish larvae were used in acute toxicity tests to reveal the hepatotoxicity of Em8G. Adult zebrafish were then used to evaluate the gender differences in hepatotoxicity induced by Em8G. Integration of transcriptomic and metabolomic analysis was used further to explore the molecular mechanisms underlying gender differences in hepatotoxicity. RESULTS: Our results showed that under non-lethal concentration exposure conditions, hepatotoxicity was observed in Em8G-treated zebrafish larvae, including changes in liver transmittance, liver area, hepatocyte apoptosis and hepatocyte vacuolation. Male adult zebrafish displayed a higher Em8G-induced hepatotoxicity than female zebrafish, as demonstrated by the higher mortality and histopathological alterations. The results of transcriptomics combined with metabolomics showed that Em8G mainly affected carbohydrate metabolism (such as TCA cycle) in male zebrafish and amino acid metabolism (such as arginine and proline metabolism) in females, suggesting that the difference of energy metabolism disorder may be the potential mechanism of male and female liver toxicity induced by Em8G. CONCLUSIONS: This study provided the direct evidence for the hepatotoxicity of Em8G to zebrafish models in vivo, and brought a new insight into the molecular mechanisms of Em8G hepatotoxicity, which can guide the rational application of this phytotoxin. In addition, our findings revealed gender differences in the hepatotoxicity of Em8G to zebrafish, which is related to energy metabolism and provided a methodological reference for evaluating hepatotoxic drugs with gender differences.


Chemical and Drug Induced Liver Injury , Liver , Metabolomics , Zebrafish , Animals , Male , Female , Liver/drug effects , Liver/metabolism , Transcriptome/drug effects , Glucosides/toxicity , Glucosides/pharmacology , Sex Factors , Emodin/analogs & derivatives , Emodin/toxicity , Emodin/pharmacology , Larva/drug effects , Anthraquinones/toxicity , Toxicity Tests, Acute , Drugs, Chinese Herbal/toxicity
17.
Nat Commun ; 15(1): 999, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38307892

The bottom-up molecular science research paradigm has greatly propelled the advancement of materials science. However, some organic molecules can exhibit markedly different properties upon aggregation. Understanding the emergence of these properties and structure-property relationship has become a new research hotspot. In this work, by taking the unique closed-form rhodamines-based aggregation-induced emission (AIE) system as model compounds, we investigated their luminescent properties and the underlying mechanism deeply from a top-down viewpoint. Interestingly, the closed-form rhodamine-based AIE system did not display the expected emission behavior under high-viscosity or low-temperature conditions. Alternatively, we finally found that the molecular conformation change upon aggregation induced intramolecular charge transfer emission and played a significant role for the AIE phenomenon of these closed-form rhodamine derivatives. The application of these closed-form rhodamine-based AIE probe in food spoilage detection was also explored.

18.
Plant Dis ; 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38411609

Epimedium sagittatum (Sieb.et Zucc.) Maxim. is an important material of traditional Chinese medicine because of the rich content of flavonoids that are used to treat osteoporosis, liver cancer, and sexual dysfunction (Liu et al. 2013). A leaf blight was observed on E. sagittatum in Zhumadian City, China (32°58'12" N, 114°37'48" E, continental monsoon climate) in June 2021. Survey indicated that about 18% of the plants were infected in a 266-ha commercial planting area. The initial symptoms were white patches with tan borders, irregular in outline, with small black particles visible on the center of the lesions. In a week or so, patches extended throughout the leaf, and then leaves withered. Thirty leaves with symptoms collected from five different sites were cut into 5×5 mm pieces, and then surface-sterilized with 75% ethanol for 15 s followed by rinsing with double distilled water (ddH2O) three times. The pieces were then disinfested with 0.1% HgCl2 solution for 30 s, and rinsed with ddH2O, then placed onto potato-dextrose agar medium (PDA) and incubated in the dark for 3 d at 28°C. Eight fungal isolates were purified; of these, only the isolate HY2-1 infected the host plant and was selected for further morphological characterization. The colonies of HY2-1 were olive green with loose aerial hyphae on PDA. Conidiophores were single or branched, producing brown conidia in short chains. Conidia were obclavate, obpyriform, or ellipsoidal, 15.9-47.3 µm × 7.6-16.6 µm (n=50) and pale brown or dark brown with a short cylindrical beak at the tip that contained 1-5 transverse septa and 0-4 longitudinal septa. Morphological characteristics of the isolate were identical with those of Alternaria species (Huang et al. 2022). For molecular identification, the internal transcribed spacers (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Weir et al. 2012), major allergen Alt a 1(Alt a 1) and translation elongation factor 1-α gene (TEF) (Lawrence et al. 2013) were amplified and sequenced using the primers ITS4/5, GDF/GDR, Alt-F/R, and EF1-728F/986R, respectively. The results of the sequencing were uploaded to GenBank as ITS (OR418487), GAPDH (OR419792), Alt a 1 (OR419794), and TEF (OR419796), respectively. Phylogenetic analyses were performed by concatenating all the sequenced loci using the Bayesian method in Phylosuite (Zhang et al.2020). The phylogenetic tree indicated that the isolate belongs to the A. alternata clade with a bootstrap value of 75%. The pathogen was identified as A. alternata based on the morphological and molecular results. To satisfy Koch's postulates, a conidial suspension (106 conidia/mL) of the HY2-1 was prepared with ddH2O to infect the healthy plants. Ninety healthy leaves on 30 plants in pots were punctured using a sterilized needle, and then inoculated by spraying the conidial suspension on the wounded leaves in a greenhouse at 25°C and 80% relative humidity. The control plants were sprayed with ddH2O. The plants showed similar symptoms to the original infected plant 15 d after inoculation. The controls showed no symptoms. A pure culture of A. alternata was isolated and identified again as previously described. Leaf blight caused by A. alternata has been reported on Taro (Liu et al. 2020), Toona ciliata (Wang et al. 2023), etc. To our knowledge, this is the first report of E. sagittatum leaf blight caused by A. alternata in China. The results will help to develop effective control strategies for leaf blight on E. sagittatum.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123987, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38330761

Carbon monoxide (CO) as an endogenous gas signaling molecule possesses important physiological functions and is of great significance in the treatment of various diseases. Real-time tracking of CO in living organisms has become a research hotspot in recent years. This article presents a lysosomal targeted near-infrared ratio fluorescence probe (TBM-CO) for selective detection of CO based on the dicyanoisophorone skeleton and morpholine fragment. The probe TBM-CO with weak ICT effect can be transformed to precursor TBM-NH2 with strong ICT effect by the traditional Tsuji-Trost reaction procession in the presence of Pd2+ ions. The mechanism was proved by DFT calculation or the MS and HPLC results respectively. In the near-infrared region an obvious ratio fluorescence intensity change (F686 / F616) is observed in vitro spectral experiments. The concentration titration experiments indicate that there is a good liner relationship between the ratio fluorescence intensity and the concentration in the range of 0 to 50 µM (R2 = 0.996) and the detection limit is calculated as 0.38 µM. The cell fluorescence imaging and co-localization experiments further demonstrate that TBM-CO is able to detect the exogenous and endogenous CO in lysosomal subcellular organelle. Finally, it was used to detect the changes of CO concentration in living mice successfully. In short, a probe with three advantages of near-infrared emission, ratiometric fluorescence and organelle targeting was reported and used to detect CO successfully in cells and in living mice.


Carbon Monoxide , Fluorescent Dyes , Mice , Animals , Microscopy, Fluorescence/methods , Signal Transduction , Lysosomes
20.
Radiat Oncol ; 19(1): 25, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38413988

BACKGROUND: Platinum-etoposide chemotherapy combined with immune checkpoint inhibitors (ICIs) has been recommended as the first-line standard treatment for extensive-stage small-cell lung cancer (ES-SCLC). However, the effect of thoracic radiotherapy (TRT) on these patients is still unknown. This study aimed to evaluate the efficacy and safety of TRT for ES-SCLC patients who responded to first-line ICIs and chemotherapy (CHT). METHODS: Patients who received 4 to 6 cycles of ICIs and CHT as first-line therapy at three hospitals between 2018 and 2022 were included in the analysis. All patients were divided into two groups based on whether they received TRT as first-line treatment, and propensity score matching (PSM) was performed to ensure that the characteristics of two groups were well-balanced. The primary endpoints were overall survival (OS) and progression-free survival (PFS), and the secondary endpoint was toxic effects. RESULTS: A total of 276 patients were included, and the median follow-up time was 22.3 (range, 4.0-53.73) months. After PSM, 197 patients were further analysed, and 99 of whom received TRT. The baseline characteristics were well-balanced between patients in the TRT and non-TRT groups. There were significant differences in PFS between the TRT and non-TRT groups, with the median PFS of 10.76 and 7.63 months, respectively (P = 0.014). Significantly improved OS was observed in the TRT group (21.67 vs. 16.6 months, P = 0.009). In addition, the use of TRT was an independent prognostic factor for PFS and OS of ES-SCLC patients receiving ICIs plus CHT. In terms of safety, no significant increase of any grades adverse event (AE) (P = 0.874) and G3-4 AE (P = 0.909) was observed for patients receiving TRT. Radiation esophagitis, gastrointestinal and hematologic toxicities were the most common AEs in TRT group, which were tolerable. And high-dose radiotherapy was associated with higher incidence of pneumonitis. CONCLUSION: Addition of TRT showed significant survival benefits and well tolerability in ES-SCLC patients receiving platinum-etoposide CHT and ICIs, which could be a feasible first-line treatment strategy for ES-SCLC patients.


Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Etoposide/therapeutic use , Retrospective Studies , Propensity Score , Platinum/therapeutic use , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/radiotherapy , Immunotherapy
...