Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(25): e2300759, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919820

RESUMEN

SiOx anode has a more durable cycle life than Si, being considered competitive to replace the conventional graphite. SiOx usually serves as composites with carbon to achieve more extended cycle life. However, the carbon microstructure dependent Li-ion storage behaviors in SiOx /C anode have received insufficient attention. Herein, this work demonstrates that the disorder of carbon can determine the ratio of inter- and intragranular Li-ion diffusions. The resulted variation of platform characteristics will result in different compatibility when matching SiOx . Rational disorder induced intergranular diffusion can benefit phase transition of SiOx /C, benefiting the electrochemical performance. Through a series of quantitative calculations and in situ X-ray diffraction characterizations, this work proposes the rational strategy for the future optimization, thus achieving preferable performance of SiOx /C anode.

2.
Small ; 18(39): e2203459, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36026577

RESUMEN

Tin chalcogenides are regarded as promising anode materials for potassium ion batteries (PIBs) due to their considerable specific capacity. However, the severe volume effect, limited electronic conductivity, and the shuttle effect of the potassiation product restrict the application prospect. Herein, based on the metal evaporation reaction, a facile structural engineering strategy for yolk-shell SnSe encapsulated in carbon shell (SnSe@C) is proposed. The internal void can accommodate the volume change of the SnSe core and the carbon shell can enhance the electronic conductivity. Combining qualitative and quantitative electrochemical analyses, the distinguished electrochemical performance of SnSe@C anode is attributed to the contribution of enhanced capacitive behavior. Additionally, first-principles calculations elucidate that the heteroatomic doped carbon exhibits a preferable affinity toward potassium ions and the potassiation product K2 Se, boosting the rate performance and capacity retention consequently. Furthermore, the phase evolution of SnSe@C electrode during the potassiation/depotassiation process is clarified by in situ X-ray diffraction characterization, and the crystal transition from the SnSe Pnma(62) to Cmcm(63) point group is discovered unpredictably. This work demonstrates a pragmatic avenue to tailor the SnSe@C anode via a facile structural engineering strategy and chemical regulation, providing substantial clarification for the phase evolution mechanism of SnSe-based anode for PIBs.

3.
Front Pharmacol ; 12: 607379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790784

RESUMEN

Liver cancer is associated with high mortality, particularly in patients infected with the hepatitis B virus. Treatment methods remain very limited. Here, we explored the effects of 17ß-estradiol (E2) on apoptosis of various liver cell lines (LO2, HepG2, and HepG2.2.15 cells). Within a certain concentration range, 17ß-estradiol induced oxidative stress and apoptosis of HepG2 cells, downregulated ERα-36 expression, and increased Akt and Foxo3a phosphorylation. p-Foxo3a became localized around the nucleus but did not enter the organelle. The levels of mRNAs encoding manganese superoxide dismutase (MnSOD) and catalase, to the promoters of which Foxo3a binds to trigger gene expression, were significantly reduced in HepG2 cells. 17ß-estradiol had no obvious effects on LO2 or HepG2.2.15 cells. We speculate that 17ß-estradiol may induce oxidative stress in HepG2 cells by increasing Foxo3a phosphorylation, thus promoting apoptosis. This may serve as a new treatment for hepatocellular carcinoma.

4.
Plant Biotechnol J ; 18(3): 721-731, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31452351

RESUMEN

The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome. CRISPR-Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR-Cas9 as a mutant screening tool. Here, we report a pooled CRISPR-Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR-Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 59.2%, including 35.6% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmric1/gmric2 double mutants with increased nodule numbers and gmrdn1-1/1-2/1-3 triple mutant lines with decreased nodulation. Our study provides an advanced strategy for the generation of a targeted multiplex mutant population to overcome the gene redundancy problem in soya bean as well as in other major crops.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Glycine max/genética , Mutagénesis , Nódulos de las Raíces de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA