Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.697
1.
ACS Nano ; 18(20): 12808-12819, 2024 May 21.
Article En | MEDLINE | ID: mdl-38717026

Considerable progress has already been made in sweat sensors based on electrochemical methods to realize real-time monitoring of biomarkers. However, realizing long-term monitoring of multiple targets at the atomic level remains extremely challenging, in terms of designing stable solid contact (SC) interfaces and fully integrating multiple modules for large-scale applications of sweat sensors. Herein, a fully integrated wristwatch was designed using mass-manufactured sensor arrays based on hierarchical multilayer-pore cross-linked N-doped porous carbon coated by reduced graphene oxide (NPCs@rGO-950) microspheres with high hydrophobicity as core SC, and highly selective monitoring simultaneously for K+, Na+, and Ca2+ ions in human sweat was achieved, exhibiting near-Nernst responses almost without forming an interfacial water layer. Combined with computed tomography, solid-solid interface potential diffusion simulation results reveal extremely low interface diffusion potential and high interface capacitance (598 µF), ensuring the excellent potential stability, reversibility, repeatability, and selectivity of sensor arrays. The developed highly integrated-multiplexed wristwatch with multiple modules, including SC, sensor array, microfluidic chip, signal transduction, signal processing, and data visualization, achieved reliable real-time monitoring for K+, Na+, and Ca2+ ion concentrations in sweat. Ingenious material design, scalable sensor fabrication, and electrical integration of multimodule wearables lay the foundation for developing reliable sweat-sensing systems for health monitoring.


Electrolytes , Graphite , Sweat , Wearable Electronic Devices , Sweat/chemistry , Humans , Graphite/chemistry , Electrolytes/chemistry , Ions/analysis , Calcium/analysis , Sodium/analysis , Sodium/chemistry , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Potassium/analysis
2.
Adv Sci (Weinh) ; : e2307981, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713722

Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.

3.
J Mater Chem B ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38742364

Melittin (Mel) is considered a promising candidate drug for the treatment of triple negative breast cancer (TNBC) due to its various antitumor effects. However, its clinical application is hampered by notable limitations, including hemolytic activity, rapid clearance, and a lack of tumor selectivity. Here, we designed novel biomimetic nanoparticles based on homologous tumor cell membranes and poly(lactic-co-glycolic acid) (PLGA)/poly(beta-aminoester) (PBAE), denoted MDM@TPP, which efficiently coloaded the cytolytic peptide Mel and the photosensitizer mTHPC. Both in vitro and in vivo, the MDM@TPP nanoparticles effectively mitigated the acute toxicity of melittin and exhibited strong TNBC targeting ability due to the homologous targeting effect of the tumor cell membrane. Under laser irradiation, the MDM@TPP nanoparticles showed excellent photodynamic performance and thus accelerated the release of Mel by disrupting cell membrane integrity. Moreover, Mel combined with photodynamic therapy (PDT) can synergistically kill tumor cells and induce significant immunogenic cell death, thereby stimulating the maturation of dendritic cells (DCs). In 4T1 tumor-bearing mice, MDM@TPP nanoparticles effectively inhibited the growth and metastasis of primary tumors and finally prevented tumor recurrence by improving the immune response.

4.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Article En | MEDLINE | ID: mdl-38703140

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Colitis, Ulcerative , Curcumin , Metal-Organic Frameworks , Peptides , Curcumin/chemistry , Curcumin/administration & dosage , Metal-Organic Frameworks/chemistry , Animals , Humans , Peptides/chemistry , Peptides/administration & dosage , Colitis, Ulcerative/drug therapy , Mice , Chitosan/chemistry , Egg White/chemistry , Polysaccharides/chemistry , Male , Administration, Oral , Drug Synergism , gamma-Cyclodextrins/chemistry , Drug Carriers/chemistry , Egg Proteins/chemistry
5.
Nephrology (Carlton) ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38716715

AIM: The aim of this study was to examine the clinical and pathological characteristics as well as the prognosis of immunoglobulin A nephropathy (IgAN) accompanied by renal thrombotic microangiopathy (rTMA) in paediatric patients. METHODS: After balancing epidemiological characteristics and pathological types between groups, 427 patients (rTMA group: 23, non-rTMA group: 46) were included. The clinical and pathological features, prognosis and clinical risk factors of the two groups were analysed. RESULTS: IgAN-rTMA children showed more severe clinical and pathological manifestations. The findings from the logistic regression analysis indicated that hypercellularity 1 (E1) (HR: 0.805, 95% CI: 0.763 ~ 1.452, P = .016), endocapillary proliferation (HR: 1.214, 95% CI: 0.093 ~ 4.815, P = .025) and C3 staining (HR: 7.554, 95% CI: 2.563 ~ 15.729, P = .037) were the risk factors for rTMA in children with IgAN. The renal survival in rTMA group was lower than non-rTMA group (χ2 = 18.467, P = .000). Cox regression analysis showed that E1 (HR: 7.441, 95% CI: 1.095 ~ 10.768, P = .037), C3 disposition (HR: 3.414, 95% CI: 0.834 ~ 11.578, P = .027) and rTMA (HR: 8.918, 95% CI: 1.032 ~ 16.754, P = .041) were identified as independent risk factors for the development of end-stage renal disease (ESRD). CONCLUSION: The presence of rTMA had a significant impact on the severity and prognosis of IgAN. And rTMA has been identified as an independent risk factor for the development of renal failure in children diagnosed with IgAN.

6.
BMC Pregnancy Childbirth ; 24(1): 375, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760653

BACKGROUND: Limited evidence exists regarding the association between gestational diabetes mellitus (GDM) and elevated levels of thyroid-stimulating hormone (TSH) in newborns. Therefore, this study aimed to investigate the potential risk of elevated TSH levels in infants exposed to maternal GDM, considering the type and number of abnormal values obtained from the 75-gram oral glucose tolerance test (OGTT). METHODS: A population-based, prospective birth cohort study was conducted in Wuhan, China. The study included women who underwent GDM screening using a 75-g OGTT. Neonatal TSH levels were measured via a time-resolved immunofluorescence assay. We estimated and stratified the overall risk (adjusted Risk Ratio [RR]) of elevated TSH levels (defined as TSH > 10 mIU/L or > 20 mIU/L) in offspring based on the type and number of abnormal OGTT values. RESULTS: Out of 15,236 eligible mother-offspring pairs, 11.5% (1,753) of mothers were diagnosed with GDM. Offspring born to women diagnosed with GDM demonstrated a statistically significant elevation in TSH levels when compared to offspring of non-GDM mothers, with a mean difference of 0.20 [95% CI: 0.04-0.36]. The incidence of elevated TSH levels (TSH > 10 mIU/L) in offspring of non-GDM women was 6.3 per 1,000 live births. Newborns exposed to mothers with three abnormal OGTT values displayed an almost five-fold increased risk of elevated TSH levels (adjusted RR 4.77 [95% CI 1.64-13.96]). Maternal fasting blood glucose was independently and positively correlated with neonatal TSH levels and elevated TSH status (TSH > 20 mIU/L). CONCLUSIONS: For newborns of women with GDM, personalized risk assessment for elevated TSH levels can be predicated on the type and number of abnormal OGTT values. Furthermore, fasting blood glucose emerges as a critical predictive marker for elevated neonatal TSH status.


Diabetes, Gestational , Glucose Tolerance Test , Thyrotropin , Humans , Female , Thyrotropin/blood , Pregnancy , Diabetes, Gestational/blood , Infant, Newborn , Adult , China/epidemiology , Prospective Studies , Birth Cohort , Male , Cohort Studies
7.
Pain Ther ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38743247

Cortical spreading depression (CSD) is a slow wave of cortical depolarization closely associated with migraines with an aura. Previously, it was thought that CSD depolarization was mainly driven by neurons, with characteristic changes in neuronal swelling and increased extracellular potassium (K+) and glutamate. However, the role of astrocytes, a member of the neurovascular unit, in migraine with CSD has recently received increasing attention. In the early stages of CSD, astrocytes provide neurons with energy support and clear K+ and glutamate from synaptic gaps. However, in the late stages of CSD, astrocytes release large amounts of lactic acid to exacerbate hypoxia when the energy demand exceeds the astrocytes' compensatory capacity. Astrocyte endfoot swelling is a characteristic of CSD, and neurons are not similarly altered. It is primarily due to K+ influx and abnormally active calcium (Ca2+) signaling. Aquaporin 4 (AQP-4) only mediates K+ influx and has little role as an aquaporin. Astrocytes endfoot swelling causes perivascular space closure, slowing the glymphatic system flow and exacerbating neuroinflammation, leading to persistent CSD. Astrocytes are double-edged swords in migraine with CSD and may be potential targets for CSD interventions.

8.
Addict Behav ; 156: 108061, 2024 May 13.
Article En | MEDLINE | ID: mdl-38744213

INTRODUCTION: Social media are important venues for youth's exposure to e-cigarette content. This study examined how exposure to user-generated e-cigarette content (i.e., content created and shared by individual social media users) is associated with vulnerabilities to e-cigarette use among youth non-users. METHODS: We pooled data from the 2021 and 2022 National Youth Tobacco Survey. Youth who have never used e-cigarettes were included. Weighted linear and logistic regressions were conducted to examine how exposure to user-generated e-cigarette content (from real-life friends, online-only friends, and celebrities/influencers) on social media was associated with e-cigarette use vulnerabilities measured by perceived norms, perceived risk, and susceptibility of use, controlling for demographics, advertising exposure, and mental health conditions. Multiple imputations were performed to account for missing data. RESULTS: Exposure to e-cigarette content on social media posted by real-life friends, online-only friends, and celebrities/influencers were associated with more positive descriptive norm (ßs = 1.56, 0.37, and 0.35, respectively, all ps < .001), more positive injunctive norm (ßs = 0.46, 0.19, and 0.10, respectively, all ps < .001), and higher odds of e-cigarette use susceptibility (ORs = 1.48, 1.50. 1.29, respectively, all ps < .001). Exposure to content posted by real-life and online-only friends were associated with reduced risk perception of e-cigarette use (ß = -0.04, p < 0.05 and ß = -0.07, p < 0.001). CONCLUSIONS: Our study highlighted that friends and celebrities/influencers are important sources on social media that can influence youth non-users' vulnerabilities to e-cigarette use. Interventional messages communicated through friends and influencers on social media may in turn help reduce e-cigarette vulnerability among youth non-users.

9.
Anal Chem ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38749062

Solid contact (SC) calcium ion-selective electrodes (Ca2+-ISEs) have been widely applied in the analysis of water quality and body fluids by virtue of the unique advantages of easy operation and rapid response. However, the potential drift during the long-term stability test hinders their further practical applications. Designing novel redox SC layers with large capacitance and high hydrophobicity is a promising approach to stabilize the potential stability, meanwhile, exploring the transduction mechanism is also of great guiding significance for the precise design of SC layer materials. Herein, flower-like copper sulfide (CunS-50) composed of nanosheets is meticulously designed as the redox SC layer by modification with the surfactant (CTAB). The CunS-50-based Ca2+-ISE (CunS-50/Ca2+-ISE) demonstrates a near-Nernstian slope of 28.23 mV/dec for Ca2+ in a wide activity linear range of 10-7 to 10-1 M, with a low detection limit of 3.16 × 10-8 M. CunS-50/Ca2+-ISE possesses an extremely low potential drift of only 1.23 ± 0.13 µV/h in the long-term potential stability test. Notably, X-ray absorption fine-structure (XAFS) spectra and electrochemical experiments are adopted to elucidate the transduction mechanism that the lipophilic anion (TFPB-) participates in the redox reaction of CunS-50 at the solid-solid interface of ion-selective membrane (ISM) and redox inorganic SC layer (CunS-50), thereby promoting the generation of free electrons to accelerate ion-electron transduction. This work provides an in-depth comprehension of the transduction mechanism of the potentiometric response and an effective strategy for designing redox materials of ion-electron transduction triggered by lipophilic anions.

10.
Thorac Cancer ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38757212

BACKGROUND: The aim of the present study was to evaluate the impact of intratumoral metabolic heterogeneity and quantitative 18F-FDG PET/CT imaging parameters in predicting patient outcomes in thymic epithelial tumors (TETs). METHODS: This retrospective study included 100 patients diagnosed with TETs who underwent pretreatment 18F-FDG PET/CT. The maximum and mean standardized uptake values (SUVmax and SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) on PET/CT were measured. Heterogeneity index-1 (HI-1; standard deviation [SD] divided by SUVmean) and heterogeneity index-2 (HI-2; linear regression slopes of the MTV according with different SUV thresholds), were evaluated as heterogeneity indices. Associations between these parameters and patient survival outcomes were analyzed. RESULTS: The univariate analysis showed that Masaoka stage, TNM stage, WHO classification, SUVmax, SUVmean, TLG, and HI-1 were significant prognostic factors for progression-free survival (PFS), while MTV, HI-2, age, gender, presence of myasthenia gravis, and maximum tumor diameter were not. Subsequently, multivariate analyses showed that HI-1 (p < 0.001) and TNM stage (p = 0.002) were independent prognostic factors for PFS. For the overall survival analysis, TNM stage, WHO classification, SUVmax, and HI-1 were significant prognostic factors in the univariate analysis, while TNM stage remained an independent prognostic factor in multivariate analyses (p = 0.024). The Kaplan Meier survival analyses showed worse prognoses for patients with TNM stages III and IV and HI-1 ≥ 0.16 compared to those with stages I and II and HI-1 < 0.16 (log-rank p < 0.001). CONCLUSION: HI-1 and TNM stage were independent prognostic factors for progression-free survival in TETs. HI-1 generated from baseline 18F-FDG PET/CT might be promising to identify patients with poor prognosis.

11.
Article En | MEDLINE | ID: mdl-38758446

Silicosis is an occupational lung disease because of exposure to silica dust in the workplace. Evidence on the spatiotemporal change of silicosis burden worldwide remains limited. This study utilized data extracted from the Global Burden of Disease Study 2019 to examine the numbers and age-standardized rates of incidence (ASIR), mortality (ASMR), and disability-adjusted life years (DALYs) caused by silicosis between 1990 and 2019. Average annual percentage changes (AAPCs) were calculated to evaluate the temporal trends of age-standardized indicators by sex, region, and socio-demographic index (SDI) since 1990. Results indicated an increase in new silicosis cases globally, rising by 64.61% from 84,426 in 1990 to 138,971 in 2019, with a sustained high number of DALYs attributed to this disease. Although the global age-standardized rates of incidence, mortality, and DALYs of silicosis have decreased since 1990, the number of new cases has increased in 168 countries and territories, and the ASIR of silicosis has also risen in 118 countries and territories, primarily in developing countries. Since 1990, the burden of silicosis among the elderly has significantly increased. Countries with higher SDI experienced a more rapid decline in the silicosis burden. Silicosis remains a public health problem that requires significant attention. Programs for prevention and elimination of this public health issue need to be established in more countries and territories. Protecting young workers from silica dust exposure is crucial to prevent the onset of silicosis in their later years and to reduce the disease burden among older workers.

13.
J Vis Exp ; (206)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38738896

Compared to filiform needle therapy, fire-needle therapy has both the stimulation of needles and the warming effect of heat, making it have unexpected effects on some chronic diseases and incurable diseases. Osteoporosis (OP) has a high incidence in postmenopausal women and middle-aged and elderly men, and the treatment cycle is long. According to Traditional Chinese Medicine (TCM), Lingnan fire-needle therapy has shown potential in treating osteoporosis. However, there is still a long way to go before it can be widely used. This article focuses on the application of Lingnan fire-needle therapy in the intervention of OP in rats. It covers the selection of needle tools, acupuncture point selection, positioning of rats' bodies, and fixation methods. We also outline the steps and precautions to be taken during and after needling with fire needles. The experiment was done with three groups: a normal group, a model group, and a fire-needle group, each containing 10 rats. The rats in the fire-needle group were treated with fire-needle intervention for six sessions. After the intervention period, we collected femoral specimens and performed micro-CT scans. The results suggest that fire needling can enhance bone morphology and mineral density in OP rats. This information can serve as a methodological basis for conducting basic research on fire-needle therapy.


Acupuncture Therapy , Disease Models, Animal , Osteoporosis , Animals , Rats , Osteoporosis/therapy , Female , Acupuncture Therapy/methods , Acupuncture Therapy/instrumentation , Rats, Sprague-Dawley , Needles , Medicine, Chinese Traditional/methods , Male
14.
Food Chem Toxicol ; 188: 114713, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702036

Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.


Apoptosis , Benzhydryl Compounds , Granulosa Cells , Mitochondria , Phenols , Reactive Oxygen Species , Humans , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Female , Apoptosis/drug effects , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Cell Survival/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Sulfones/toxicity , Sulfones/chemistry , Cell Line , Calcium/metabolism , Fluorocarbons
15.
Front Med (Lausanne) ; 11: 1363643, 2024.
Article En | MEDLINE | ID: mdl-38784225

Background: Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology with a poor prognosis, characterized by a lack of effective diagnostic and therapeutic interventions. The role of immunity in the pathogenesis of IPF is significant, yet remains inadequately understood. This study aimed to identify potential key genes in IPF and their relationship with immune cells by integrated bioinformatics analysis and verify by in vivo and in vitro experiments. Methods: Gene microarray data were obtained from the Gene Expression Omnibus (GEO) for differential expression analysis. The differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. By utilizing a combination of three machine learning algorithms, specific genes associated with idiopathic pulmonary fibrosis (IPF) were pinpointed. Then their diagnostic significance and potential co-regulators were elucidated. We further analyzed the correlation between key genes and immune infiltrating cells via single-sample gene set enrichment analysis (ssGSEA). Subsequently, a single-cell RNA sequencing data (scRNA-seq) was used to explore which cell types expressed key genes in IPF samples. Finally, a series of in vivo and in vitro experiments were conducted to validate the expression of candidate genes by western blot (WB), quantitative real-time PCR (qRT-PCR), and immunohistochemistry (IHC) analysis. Results: A total of 647 DEGs of IPF were identified based on two datasets, including 225 downregulated genes and 422 upregulated genes. They are closely related to biological functions such as cell migration, structural organization, immune cell chemotaxis, and extracellular matrix. CFH and FHL2 were identified as key genes with diagnostic accuracy for IPF by three machine learning algorithms. Analysis using ssGSEA revealed a significant association of both CFH and FHL2 with diverse immune cells, such as B cells and NK cells. Further scRNA-seq analysis indicated CFH and FHL2 were specifically upregulated in human IPF tissues, which was confirmed by in vitro and in vivo experiments. Conclusion: In this study, CFH and FHL2 have been identified as novel potential biomarkers for IPF, with potential diagnostic utility in future clinical applications. Subsequent investigations into the functions of these genes in IPF and their interactions with immune cells may enhance comprehension of the disease's pathogenesis and facilitate the identification of therapeutic targets.

16.
Anal Chim Acta ; 1306: 342612, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692793

Despite the widespread utilization of variable valence metals in electrochemistry, it is still a formidable challenge to enhance the valence conversion efficiency to achieve excellent catalytic activity without introducing heterophase elements. Herein, the in-situ precipitation of Co particles on Co2VO4 not only enhanced the concentration of oxygen vacancies (Ov) but also generated a greater number of low-valence metals, thereby enabling efficient reduction towards Hg(II). The electroanalysis results demonstrate that the sensitivity of Co/Co2VO4 towards Hg(II) was measured at an impressive value of 1987.74 µA µM-1 cm-2, significantly surpassing previously reported results. Further research reveals that Ov acted as the main adsorption site to capture Hg(II). The redox reactions of Co2+/Co3+ and V3+/V4+ played a synergistic role in the reduction of Hg(II), accompanied by the continuous supply of electrons from zero-valent Co to expedite the valence cycle. The Co/Co2VO4/GCE presented remarkable selectivity towards Hg(II), with excellent stability, reproducibility, and anti-interference capability. The electrode also exhibited minimal sensitivity fluctuations towards Hg(II) in real water samples, underscoring its practicality for environmental applications. This study elucidates the mechanism underlying the surface redox reaction of metal oxides facilitated by zero-valent metals, providing us with new strategies for further design of efficient and practical sensors.

17.
Food Funct ; 15(10): 5352-5363, 2024 May 20.
Article En | MEDLINE | ID: mdl-38635214

Human milk represents the gold standard for infant nutrition, with approximately 50% of the energy in human milk derived from lipids. Odd-chain fatty acids (OCFAs) have been recognized as a category of bioactive milk fatty acids in recent research; however, limited data exist on OCFAs in human milk. This study collected human milk samples spanning the postpartum period from 0 to 400 days. Phospholipids containing OCFAs (PL-OCFAs) were determined in 486 human milk samples using hydrophilic liquid chromatography-electrospray ionization-triquadrupole-mass spectrometry. Triacylglycerols containing OCFAs (TAG-OCFAs) were analyzed in 296 human milk samples using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The average total concentration of PL-OCFA ranged from 30.89 ± 14.27 mg L-1 to 93.48 ± 36.55 mg L-1 during lactation, and the average total TAG-OCFA content ranged from 103.1 ± 147.15 mg L-1 to 965.41 ± 651.67 mg L-1. Despite the lower absolute concentration of PL-OCFA, its relative concentration (8.75%-11.75%) was significantly higher than that of TAG-OCFA (0.37%-1.85%) throughout lactation. PC-OCFA, SM-OCFA and PE-OCFA are major sub-classes of PL-OCFA. Furthermore, C17:0 was the major chain length in both PL-OCFA and TAG-OCFA, followed by C15:0. C17:1 was characteristic of TAG-OCFA, while long-chain fatty acids C19:0, C21:0 and C23:0 were characteristic of PL-OCFA. Our findings highlighted the importance of bioactive lipids in human milk, suggesting that OCFAs could be targeted in future studies in relation to the health and development of infants.


Fatty Acids , Lactation , Milk, Human , Phospholipids , Triglycerides , Humans , Milk, Human/chemistry , Female , Phospholipids/analysis , Phospholipids/chemistry , Triglycerides/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , China , Adult , East Asian People
18.
Opt Express ; 32(7): 12601-12608, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38571078

Silicon avalanche photodiode (APD) single-photon detectors in space are continuously affected by radiation, which gradually degrades their dark count performance. From August 2016 to June 2023, we conducted approximately seven years (2507 days) of in-orbit monitoring of the dark count performance of APD single-photon detectors on the Micius Quantum Science Experimental Satellite. The results showed that due to radiation effects, the dark count growth rate was approximately 6.79 cps/day @ -24 °C and 0.37 cps/day @ -55 °C, with a significant suppression effect on radiation-induced dark counts at lower operating temperature. Based on the proposed radiation damage induced dark count annealing model, simulations were conducted for the in-orbit dark counts of the detector, the simulation results are consistent with in-orbit test data. In May 2022, four of these detectors underwent a cumulative 5.7 hours high-temperature annealing test at 76 °C, dark count rate shows no measurable changes, consistent with annealing model. As of now, these ten APD single-photon detectors on the Micius Quantum Science Experimental Satellite have been in operation for approximately 2507 days and are still functioning properly, providing valuable experience for the future long-term space applications of silicon APD single-photon detectors.

19.
Opt Express ; 32(7): 12645-12655, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38571082

The space time frequency transfer plays a crucial role in applications such as space optical clock networks, navigation, satellite ranging, and space quantum communication. Here, we propose a high-precision space time frequency transfer and time synchronization scheme based on a simple intensity modulation/direct detection (IM/DD) laser communication system, which occupies a communication bandwidth of approximately 0.2%. Furthermore, utilizing an optical-frequency comb time frequency transfer system as an out-of-loop reference, experimental verification was conducted on a 113 km horizontal atmospheric link, with a long-term stability approximately 8.3 × 10-16 over a duration of 7800 seconds. Over an 11-hour period, the peak-to-peak wander is approximately 100 ps. Our work establishes the foundation of the time frequency transfer, based on the space laser communication channel, for future ground-to-space and inter-satellite links.

20.
Oncol Lett ; 27(5): 223, 2024 May.
Article En | MEDLINE | ID: mdl-38590311

Given the increasing use of bevacizumab in combinatorial drug therapy for a multitude of different cancer types, there is a need for therapeutic drug monitoring to analyze the possible correlation between drug trough concentration, and therapeutic effect and adverse reactions. An ultra-performance liquid chromatography tandem-mass spectrometry method was then developed and validated to determine bevacizumab levels in human plasma samples. Chromatographic separation was achieved on a Shimadzu InertSustainBio C18 HP column, whereas subsequent mass spectrometric analysis was performed using a Shimadzu 8050CL triple quadrupole mass spectrometer equipped with an electro-spray ionization source in the positive ion mode. In total, three multiple reaction monitoring transitions of each of the surrogate peptides were chosen with 'FTFSLDTSK' applied as the quantification peptide whereas 'VLIYFTSSLHSGVPSR' and 'STAYLQMNSLR' were designated as the verification peptides using the Skyline software. This analytical method was then fully validated, with specificity, linearity, lower limit of quantitation, accuracy, precision, stability, matrix effect and recovery calculated. The linearity of this method was developed to be within the concentration range 5-400 µg/ml for bevacizumab in human plasma. Subsequently, eight patients with non-small cell lung cancer (NSCLC) were recruited and injected with bevacizumab over three periods of treatment to analyze their steady-state trough concentration and differences. To conclude, the results of the present study suggest that bevacizumab can be monitored in a therapeutic setting in patients with NSCLC.

...