Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Adv Mater ; : e2403489, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38556648

Rechargeable aqueous proton batteries with small organic molecule anodes are currently considered promising candidates for large-scale energy storage due to their low cost, stable safety, and environmental friendliness. However, the practical application is limited by the poor cycling stability caused by the shuttling of soluble organic molecules between electrodes. Herein, a cell separator is modified by a GO-casein-Cu2+ layer with a brick-and-mortar structure to inhibit the shuttling of small organic molecules. Experimental and calculation results indicate that, attributed to the synergistic effect of physical blocking of casein molecular chains and electrostatic and coordination interactions of Cu2+, bulk dissolution and shuttling of multiple small molecules can be inhibited simultaneously, while H+ transfer across the separators is not almost affected. With the protection of the GO-casein-Cu2+ separator, soluble small molecules, such as diquinoxalino[2,3-a:2',3'-c]phenazine,2,3,8,9,14,15-hexacyano (6CN-DQPZ) exhibit a high reversible capacity of 262.6 mA h g-1 and amazing stability (capacity retention of 92.9% after 1000 cycles at 1 A g-1). In addition, this strategy is also proved available to other active conjugated small molecules, such as indanthrone (IDT), providing a general green sustainable strategy for advancing the use of small organic molecule electrodes in proton cells.

2.
BMC Genomics ; 25(1): 420, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684985

Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selection shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environmental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, including biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat genome and have practical implications for marker-assisted breeding in goats.


Climate , Genomics , Goats , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Goats/genetics , Goats/physiology , Genomics/methods , Adaptation, Physiological/genetics , Breeding , Haplotypes
3.
Natl Sci Rev ; 11(4): nwae045, 2024 Apr.
Article En | MEDLINE | ID: mdl-38545446

Organic materials with rich active sites are good candidates of high-capacity anodes in aqueous batteries, but commonly low utilization of active sites limits their capacity. Herein, two isomers, symmetric and asymmetric hexaazatribenzanthraquinone (s-HATBAQ and a-HATBAQ), with rich active sites have been synthesized in a controllable manner. It has been revealed for the first time that a sulfuric acid catalyst can facilitate the stereoselective formation of s-HATBAQ. Attributed to the reduced steric hindrance in favor of proton insertion as well as the amorphous structure conducive to electrochemical dynamics, s-HATBAQ exhibits 1.5 times larger specific capacity than a-HATBAQ. Consequently, the electrode of s-HATBAQ with 50% reduced graphene oxide (s-HATBAQ-50%rGO) delivers a record high specific capacity of 405 mAh g-1 in H2SO4 electrolyte. Moreover, the assembled MnO2//s-HATBAQ-50%rGO aqueous proton full batteries show an exceptional cycling stability at 25°C and can maintain ∼92% capacity after 1000 cycles at 0.5 A g-1 at -80°C. This work demonstrates the controllable synthesis of isomers, showcases a wide-temperature-range prototype proton battery and highlights the significance of precise molecular structure modulation in organic energy storage.

4.
Toxicol In Vitro ; 95: 105742, 2024 Mar.
Article En | MEDLINE | ID: mdl-38016509

Phthalates are commonly used as plasticizers. Numerous studies have focused on endocrine, reproductive, and developmental toxicity of phthalates exposure to male organisms. In recent years, some studies looking into the aging effects of phthalates exposure in D. melanogaster showed discrepant results. In this study, we compared the different concentrations of Di(2-ethylhexyl) phthalate (DEHP) and di-isononyl phthalate (DINP) for acute and chronic treatment for different gender D. melanogaster and explored the potential mechanism of DEHP and DINP exposure. The results showed that acute exposure to DEHP or DINP at a high dose significantly decreased the lifespan of female and male D. melanogaster under HFD stress. Chronic exposure significantly decreased the lifespan of flies in all exposure groups except for the low-dose DINP exposure female group. Among them, in the normal feeding group, we found that female flies seemed to be more resistant to DEHP or DINP exposure. Meanwhile, the locomotion ability and fertility of flies exhibited a dose-dependent decline. Furthermore, phthalates did not significantly reduce the lifespan or health status of akt and foxo mutant flies in the mutant fly assays, and real-time quantitative-PCR (q-PCR) data revealed akt and foxo significant change with 10 µM DEHP or DINP treatment. This suggests that akt and foxo played a role in the process by which DEHP and DINP caused age-related declines in D. melanogaster.


Diethylhexyl Phthalate , Drosophila Proteins , Phthalic Acids , Animals , Male , Female , Diethylhexyl Phthalate/toxicity , Drosophila melanogaster , Proto-Oncogene Proteins c-akt/genetics , Phthalic Acids/toxicity , Plasticizers/toxicity , Aging , Drosophila Proteins/genetics , Forkhead Transcription Factors/genetics
5.
Aging (Albany NY) ; 15(7): 2667-2688, 2023 04 06.
Article En | MEDLINE | ID: mdl-37036471

BACKGROUND: Immunogenic cell death (ICD) is a form of regulated cell death (RCD) which could drive the activation of the innate and adaptive immune responses. In this work, we aimed to develop an ICD-related signature to facilitate the assessment of prognosis and immunotherapy response for melanoma patients. METHODS: A set of machine learning methods, including consensus clustering, non-negative matrix factorization (NMF) method and least absolute shrinkage and selection operator (LASSO) logistic regression model, and bioinformatics analytic tools were integrated to construct an ICD-related risk score (ICDscore). CIBERSORT and ESTIMATE algorithm were used to evaluate the infiltration of immune cells. The 'pRRophetic' package in R and 6 cohorts of melanoma patients receiving immunotherapy were used for therapy sensitivity analyses. The predictive performance between ICDscore with other mRNA signatures were also compared. RESULTS: The ICDscore could predict prognosis and immunotherapy response in multiple cohorts, and displayed superior performance than other forms of cell death-related signatures or 52 published signatures. The melanoma patients with low ICDscore were marked with high infiltration of immune cells, high expression of immune checkpoint inhibitor-related genes, and increased tumor mutation burden. CONCLUSIONS: In conclusion, we constructed a stable and robust ICD-related signature for evaluating the prognosis and benefits of immunotherapy, and it could serve as a promising tool to guide decision-making and surveillance for individual melanoma patients.


Immunogenic Cell Death , Melanoma , Humans , Melanoma/therapy , Prognosis , Immunotherapy , Machine Learning , Tumor Microenvironment
6.
ACS Appl Mater Interfaces ; 15(18): 22051-22064, 2023 May 10.
Article En | MEDLINE | ID: mdl-37104816

Recently, carbon nitrides and their carbon-based derivatives have been widely studied as anode materials of lithium-ion batteries due to their graphite-like structure and abundant nitrogen active sites. In this paper, a layered carbon nitride material C3N3 consisting of triazine rings with an ultrahigh theoretical specific capacity was designed and synthesized by an innovative method based on Fe powder-catalyzed carbon-carbon coupling polymerization of cyanuric chloride at 260 °C, with reference to the Ullmann reaction. The structural characterizations indicated that the as-synthesized material had a C/N ratio close to 1:1 and a layered structure and only contained one type of nitrogen, suggesting the successful synthesis of C3N3. When used as a lithium-ion battery anode, the C3N3 material showed a high reversible specific capacity up to 842.39 mAh g-1 at 0.1 A g-1, good rate capability, and excellent cycling stability attributed to abundant pyridine nitrogen active sites, large specific surface area, and good structure stability. Ex situ XPS results indicated that Li+ storage relies on the reversible transformation of -C=N- and -C-N- groups as well as the formation of bridge-connected -C=C- bonds. To further optimize the performance, the reaction temperature was further increased to synthesize a series of C3N3 derivatives for the enhanced specific surface area and conductivity. The resulting derivative prepared at 550 °C showed the best electrochemical performance, with an initial specific capacity close to 900 mAh g-1 at 0.1 A g-1 and good cycling stability (94.3% capacity retention after 500 cycles at 1 A g-1). This work will undoubtedly inspire the further study of high-capacity carbon nitride-based electrode materials for energy storage.

7.
Ecol Evol ; 13(2): e9813, 2023 Feb.
Article En | MEDLINE | ID: mdl-36789341

The Geometroidea is a large superfamily of Lepidoptera in species composition and contains numerous economically important pest species that cause great loss in crop and forest production. However, understanding of mitogenomes remains limited due to relatively fewer mitogenomes previously reported for this megadiverse group. Here, we sequenced and annotated nine mitogenomes for Geometridae and further analyzed the mitogenomic evolution and phylogeny of the whole superfamily. All nine mitogenomes contained 37 mitochondrial genes typical in insects, and gene organization was conserved except for Somatina indicataria. In S. indicataria, the positions of two tRNAs were rearranged. The trnR was located before trnA instead of after trnA typical in Lepidoptera, whereas the trnE was detected rarely on the minority strand (N-strand). This trnR-trnA-trnN-trnS1-trnE-trnF newly recognized in S. indicataria represents the first gene rearrangement reported for Geometroidea and is also unique in Lepidoptera. Besides, nucleotide composition analyses showed little heterogeneity among the four geometrid subfamilies involved herein, and overall, nad6 and atp8 have higher nucleotide diversity and Ka/Ks rate in Geometridae. In addition, the taxonomic assignments of the nine species, historically defined by morphological studies, were confirmed by various phylogenetic analyses based on the hitherto most extensive mitogenomic sampling in Geometroidea.

8.
Small ; 19(16): e2207487, 2023 Apr.
Article En | MEDLINE | ID: mdl-36693783

Benefiting from the proton's small size and ultrahigh mobility in water, aqueous proton batteries are regarded as an attractive candidate for high-power and ultralow-temperature energy storage devices. Herein, a new-type C4 N polymer with uniform micropores and a large specific surface area is prepared by sulfuric acid-catalyzed ketone amine condensation reaction and employed as the electrode of proton batteries. Multi-walled carbon nanotubes (MWCNT) are introduced to induce the in situ growth of C4 N, and reaped significantly enhanced porosity and conductivity, and thus better both room- and low-temperature performance. When coupled with MnO2 @Carbon fiber (MnO2 @CF) cathode, MnO2 @CF//C4 N-50% MWCNT full battery shows unprecedented cycle stability with a capacity retention of 98% after 11 000 cycles at 10 A g-1 and even 100% after 70 000 cycles at 20 A g-1 . Additionally, a novel anti-freezing electrolyte (5 m H2 SO4  + 0.5 m MnSO4 ) is developed and showed a high ionic conductivity of 123.2 mS cm-1 at -70 °C. The resultant MnO2 @CF//C4 N-50% MWCNT battery delivers a specific capacity of 110.5 mAh g-1 even at -70 °C at 1 A g-1 , the highest in all reported proton batteries under the same conditions. This work is expected to offer a package solution for constructing high-performance ultralow-temperature aqueous proton batteries.

9.
J Econ Entomol ; 115(6): 2083-2091, 2022 12 14.
Article En | MEDLINE | ID: mdl-36256384

The soybean aphid Aphis glycines Matsumura is a predominant insect pest in Asia and North America and causes great losses to soybean. The release of genome data for A. glycines will facilitate gene function research in the future. However, suitable reference genes for A. glycines under various experimental conditions are scarce. To search for appropriate reference genes for A. glycines, nine candidate reference genes, including Act, α-Tub, ß-Tub, RPS12, RPS18, RPL5, RPL27, EF1α, and Fer, were tested under six experimental conditions to evaluate their suitability for use in the normalization of qRT‒PCR data. Results showed that EF1α and RPS12 were optimal for the developmental stages of A. glycines, RPS18 and RPS12 were appropriate for wing dimorphism, ß-Tub and RPS18 were suitable for different tissues and RPL5, and α-Tub could be used for normalization at different temperatures. ß-Tub and EF1α could be proposed as reference genes for insecticide treatment, and RPL5 and RPS12 were found to be the most stable reference genes in different photoperiods. The results provide appropriate reference genes for analyzing gene expression in A. glycines and contribute to future research on the molecular physiology and biochemistry of A. glycines.


Aphids , Insecticides , Animals , Aphids/physiology , Glycine max/genetics , Insecta/genetics , Insecticides/metabolism , Polymerase Chain Reaction
10.
Pest Manag Sci ; 78(10): 4340-4352, 2022 Oct.
Article En | MEDLINE | ID: mdl-35754391

BACKGROUND: The bean bug, Riptortus pedestris, has received intense attention in recent years because of its involvement in increasing outbreaks of staygreen syndrome in soybean (Glycine max (L.)), often causing almost 100% loss of soybean yield in China. However, for this pest of great economic importance, potential current and future distribution patterns and their underlying driving factors remain unclear. RESULTS: Maxent modelling under climate, elevation and land-use (including the distribution information of G. max) variables showed that the current potential distribution covered a vast geographic range, primarily including most parts of south, South East and east Asia. Under future environmental scenarios, suitable habitat expanded markedly. Areas that would become highly suitable for R. pedestris were primarily located in north-east China and west India. Five bioclimatic (BIO13, BIO08, BIO18, BIO02 and BIO07) and one land-use (C3 annual crops) predictors contributed approximately 95% to the modelling, and analyses of curve responses showed that to a certain extent, R. pedestris preferred relatively high temperature and precipitation. Our results indicate that a high risk of R. pedestris outbreaks is present in parts of Asia, especially in the soybean-growing regions of China, and this risk will continue in the future. CONCLUSION: The predicted distribution pattern and key regulating factors identified herein could provide a vital reference for developing pest management policies and further alleviate the incidence of staygreen syndrome in soybean. © 2022 Society of Chemical Industry.


Glycine max , Heteroptera , Animals , China , Ecosystem , Asia, Eastern , Heteroptera/physiology
11.
Langmuir ; 38(7): 2287-2293, 2022 Feb 22.
Article En | MEDLINE | ID: mdl-35148111

Carbon dots (CDs) with long-lived room-temperature phosphorescence (RTP) or long afterglow properties draw much attention. However, most room-temperature phosphorescent materials are metal containing, and the exploitation of long-lived color-tunable RTP materials faces great challenges. Here, we report metal-free boron-doped CDs (B-CDs) for room-temperature phosphorescence with tunable color and an ultralong lifetime. B-CDs were obtained by simply calcining a mixture of boric acid and 1,3,5-benzenetricarboxylic acid in the atmosphere. The as-prepared B-CDs were characterized through UV-vis spectroscopy, photoluminescence spectroscopy, and so forth. Under the excitation of 310 nm UV light, B-CDs show RTP that appears as blue with a phosphorescence lifetime of 1042 ms, and after switching the excited wavelength to 365 nm, the RTP appears as green with a phosphorescence lifetime of 590 ms. Due to the unique RTP properties, B-CDs display promising applications in anticounterfeiting and information encryption.

12.
Insects ; 12(11)2021 Nov 18.
Article En | MEDLINE | ID: mdl-34821839

The Pyraloidea is one of the species-rich superfamilies of Lepidoptera and contains numerous economically important pest species that cause great loss in crop production. Here, we sequenced and annotated nine complete mitogenomes for Pyraloidea, and further performed various phylogenetic analyses, to improve our understanding of mitogenomic evolution and phylogeny of this superfamily. The nine mitogenomes were circular, double-stranded molecules, with the lengths ranging from 15,214 bp to 15,422 bp, which are comparable to other reported pyraloid mitogenomes in size. Gene content and arrangement were highly conserved and are typical of Lepidoptera. Based on the hitherto most extensive mitogenomic sampling, our various resulting trees showed generally congruent topologies among pyraloid subfamilies, which are almost in accordance with previous multilocus studies, indicating the suitability of mitogenomes in inferring high-level relationships of Pyraloidea. However, nodes linking subfamilies in the "non-PS clade" were not completely resolved in terms of unstable topologies or low supports, and future investigations are needed with increased taxon sampling and molecular data. Unexpectedly, Orybina Snellen, represented in a molecular phylogenetic investigation for the first time, was robustly placed as basal to the remaining Pyralidae taxa across our analyses, rather than nested in Pyralinae of Pyralidae as morphologically defined. This novel finding highlights the need to reevaluate Orybina monophyly and its phylogenetic position by incorporating additional molecular and morphological evidence.

13.
BMC Genomics ; 22(1): 755, 2021 Oct 21.
Article En | MEDLINE | ID: mdl-34674653

BACKGROUND: Mitochondrial genomes (mitogenomes) have greatly improved our understanding of the backbone phylogeny of Lepidoptera, but few studies on comparative mitogenomics below the family level have been conducted. Here, we generated 13 mitogenomes of eight tortricid species, reannotated 27 previously reported mitogenomes, and systematically performed a comparative analysis of nucleotide composition, gene variation and phylogenetic performance. RESULTS: The lengths of completely sequenced mitogenomes ranged from 15,440 bp to 15,778 bp, and the gene content and organization were conserved in Tortricidae and typical for Lepidoptera. Analyses of AT-skew and GC-skew, the effective number of codons and the codon bias index all show a base bias in Tortricidae, with little heterogeneity among the major tortricid groups. Variations in the divergence rates among 13 protein-coding genes of the same tortricid subgroup and of the same PCG among tortricid subgroups were detected. The secondary structures of 22 transfer RNA genes and two ribosomal RNA genes were predicted and comparatively illustrated, showing evolutionary heterogeneity among different RNAs or different regions of the same RNA. The phylogenetic uncertainty of Enarmoniini in Tortricidae was confirmed. The synonymy of Bactrini and Olethreutini was confirmed for the first time, with the representative Bactrini consistently nesting in the Olethreutini clade. Nad6 exhibits the highest phylogenetic informativeness from the root to the tip of the resulting tree, and the combination of the third coding positions of 13 protein-coding genes shows extremely high phylogenetic informativeness. CONCLUSIONS: This study presents 13 mitogenomes of eight tortricid species and represents the first detailed comparative mitogenomics study of Tortricidae. The results further our understanding of the evolutionary architectures of tortricid mitogenomes and provide a basis for future studies of population genetics and phylogenetic investigations in this group.


Genome, Mitochondrial , Moths , Animals , Moths/genetics , Nucleotides/genetics , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics
14.
PeerJ ; 8: e8386, 2020.
Article En | MEDLINE | ID: mdl-31976182

In this article, we present the nearly complete mitochondrial genome (mitogenome) of the weevil beetle Apion squamigerum (Curculionoidea, Brentidae), assembled using data from Illumina next generation sequencing (NGS). This mitogenome was found to be very large, with the total length of 18,562 bp. Two trnM genes were identified. A large non-coding intergenic spacer spanning 1,949 bp occurred between trnI and trnM2. Combined with 111 existing weevil mitogenomes, we conducted phylogenetic reconstructions based on various datasets under maximum likelihood and Bayesian inference. Firstly, phylogenetic analyses robustly supported a sister group of A. squamigerum and Rhopalapion longirostre, namely, that two species of Apioninae (Brentidae) formed a clade. Within the entire Curculionoidea, the Nemonychidae diverged firstly, following the families Anthribidae and Attelabidae. In addition, a large clade comprising the sister families Brentidae and Curculionidae was strongly supported in all trees.

15.
Int J Biol Macromol ; 145: 272-281, 2020 Feb 15.
Article En | MEDLINE | ID: mdl-31836393

The complete mitochondrial genomes (mitogenomes) of four Satyrini butterflies are newly determined and comparatively analyzed. These mitogenomes are all circular, double-stranded molecules, with the lengths of 15,194 bp (Minois dryas), 15,232 bp (Ypthima motschulskyi), 15,217 bp (Neope muirheadi) and 15,279 bp (Mycalesis francisca). Gene content and arrangement of newly sequenced mitogenomes are highly conserved and are typical of Lepidoptera. Interestingly, in M. francisca, a 48-bp insertion of macrosatellite (TA)24 is present at the trnE and trnF junction, which is rare in Lepidoptera. Among 13 protein-coding genes (PCGs) of reported Satyrinae mitogenomes, atp8 is a comparatively fast-evolving gene, and most PCGs of the four species sequenced show significant codon usage bias. Phylogenetic analyses based on the mitogenomes placed the four species sequenced in this study in Satyrini, confirming the result of morphological phylogeny. Moreover, phylogenetic analyses of the family Nymphalidae based on an expanded sampling and gene data from the GenBank and the present study show that several subtribe-level relationships in the speciose Satyrini are well supported as that previously defined by multiple-locus investigations. However, the subfamily-level relationships are not fully consistent across inference methods, and this needs further investigation based on mitogenome sequences of increased taxon sampling.


Butterflies/genetics , DNA, Circular/genetics , Genome, Insect , Genome, Mitochondrial , Phylogeny , Animals , Base Sequence , Butterflies/classification , Codon , DNA, Circular/chemistry , Genetic Speciation , High-Throughput Nucleotide Sequencing , Open Reading Frames , Sequence Alignment , Sequence Homology, Nucleic Acid
16.
Zookeys ; 879: 137-156, 2019.
Article En | MEDLINE | ID: mdl-31636502

The complete mitochondrial genome (mitogenome) of Yponomeuta montanatus is sequenced and compared with other published yponomeutoid mitogenomes. The mitogenome is circular, 15,349 bp long, and includes the typical metazoan mitochondrial genes (13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes) and an A + T-rich region. All 13 protein-coding genes use a typical start codon ATN, the one exception being cox1, which uses CGA across yponomeutoid mitogenomes. Comparative analyses further show that the secondary structures of tRNAs are conserved, including loss of the Dihydorouidine (DHU) arm in trnS1 (AGN), but remarkable nucleotide variation has occurred mainly in the DHU arms and pseudouridine (TψC) loops. A + T-rich regions exhibit substantial length variation among yponomeutoid mitogenomes, and conserved sequence blocks are recognized but some of them are not present in all species. Multiple phylogenetic analyses confirm the position of Y. montanatus in Yponomeutoidea. However, the superfamily-level relationships in the Macroheterocera clade in Lepidoptera recovered herein show considerable difference with that recovered in previous mitogenomic studies, raising the necessity of extensive phylogenetic investigation when more mitogenomes become available for this clade.

17.
Int J Biol Macromol ; 136: 123-132, 2019 Sep 01.
Article En | MEDLINE | ID: mdl-31199977

The Macroheterocera clade contains most of the Lepidoptera species. However, extensive comparative and phylogenetic analyses of this group using complete mitochondrial genomes (mitogenome) are limited particularly in the context of increasing macroheteroceran mitogenomes reported to date. In this study, complete mitogenome of the Epicopeia hainesii is determined as the first Epicopeiidae species with mitogenome available. The whole mitogenome is circular with 15,395 bp long, and is highly biased toward A + T nucleotides (80.6%) in nucleotide composition. Comparative analyses show that gene content and arrangement of macroheteroceran mitogenomes are generally conservative and are typical of Lepidoptera but exceptions exist. In newly sequenced mitogenome, the motif "ATACTAA" is putatively located at the end of gene nad1, rather than in intergenic sequences between trnS2 and nad1 genes routinely observed in Lepidoptera. Interestingly, multiple phylogenetic analyses recover the six macroheteroceran superfamilies as Mimallonoidea + (Drepanoidea + ((Bombycoidea + Lasiocampoidea) + (Noctuoidea + Geometroidea))), providing supports for a large-scale transcriptomic study rather than various mitogenome- and multiple-gene-based investigations. In addition, our analyses consistently place the Epicopeiidae as sister group with Geometroidea, firstly demonstrating that this family is closer with Geometroidea than Drepanoidea based on mitogenome data.


Genome, Mitochondrial/genetics , Lepidoptera/genetics , Phylogeny , Animals , Base Sequence , Genomics , Lepidoptera/classification
18.
Int J Endocrinol ; 2019: 1394097, 2019.
Article En | MEDLINE | ID: mdl-30984260

INTRODUCTION: Gut microbiota is involved in the progression of metabolic diseases such as obesity and type 2 diabetes. The ob/ob and db/db mice are extensively used as models in studies on the pathogenesis of these diseases. The goal of this study is to characterize the composition and structure of gut microbiota in these model mice at different ages. MATERIALS AND METHODS: High-throughput sequencing was used to obtain the sequences of the highly variable 16S rRNA V3-V4 region from fecal samples. The taxa with high abundance in both model mice were identified by bioinformatics analysis. Moreover, the taxa with divergent abundance in one model mice at different ages or in both model mice at the same age were also recognized. DISCUSSION AND CONCLUSION: The high abundance of Bacteroidetes and Firmicutes in microbiota composition and their imbalanced ratio in both model mice reflect the state of metabolic disorders of these mice. Differences in microbiota composition between the two model mice of the same age or in one model mice with different ages were assumed to be closely linked to the fluctuation of their blood glucose levels with age. The data on gut microbiota in ob/ob and db/db mice investigated herein has broad implications for the pathogenesis study and drug discovery on obesity and related complications.

19.
Nat Prod Res ; 33(15): 2262-2265, 2019 Aug.
Article En | MEDLINE | ID: mdl-30394102

A new meroterpenoid, named terretonin D1 (1), and three known ones, terretonin (2), terretonin A (3), and terretonin D (4), were isolated from marine-derived fungus Aspergillus terreus ML-44. The structure of 1 was elucidated by extensive spectroscopic methods, including 1D and 2D NMR, HR-ESI-MS, and the absolute configuration was determined by X-ray crystallographic analysis. The anti-inflammation activity of 1-4 was preliminarily tested, and all of them weakly inhibited the nitric oxide (NO) production of RAW264.7 macrophages stimulated by lipopolysaccharide (LPS), with inhibitory rates of 22-34% at 50 µg/mL.


Aspergillus/metabolism , Terpenes/isolation & purification , Animals , Anti-Inflammatory Agents/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Magnetic Resonance Spectroscopy , Mice , Nitric Oxide/biosynthesis , RAW 264.7 Cells , Terpenes/chemistry , Terpenes/pharmacology , Water Microbiology
20.
Int J Biol Macromol ; 123: 485-493, 2019 Feb 15.
Article En | MEDLINE | ID: mdl-30359659

The complete mitochondrial genome (mitogenome) of an important medicinal insect Hydrillodes repugnalis (Lepidoptera: Noctuoidea) was sequenced and analyzed. The mitogenome is circular with 15,570 bp long, and shows typical gene content and arrangement. Nucleotide composition is highly biased toward A + T nucleotides (81.1%). All protein-coding genes (PCGs) initiate with canonical start codon ATN, except for cox1 being CGA. The typical stop codon TAA is used for most PCGs, while the nad4l uses the TAG, and cox1 and cox2 use incomplete termination codon T. All tRNAs have a typical clover-leaf structure, except for trnS1 (AGN) lacking the dihydrouridine arm. Comparative mitogenome analysis showed that the motif "ATGATAA" between atp8 and atp6, and the motif "ATACTAA" between trnS2 and nad1 are commonly present in noctuoid mitogenomes. In A + T-rich regions, the motif "ATAGA" and subsequent poly-T structure, the motif "ATTTA" and followed macrosatellite (AT)n element and an "A"-rich 3' end upstream of the trnM gene can be recognized across noctuoid mitogenomes. Phylogenetic analyses showed that H. repugnalis is nested into the Erebidae clade, consistently being sister to the Aganainae. Within Noctuoidea, the (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))) was consistently recovered firstly based on multiple mitochondrial datasets.


Genome, Mitochondrial , Insect Proteins/genetics , Lepidoptera/genetics , Mitochondrial Proteins/genetics , Phylogeny , Animals
...