Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Invest New Drugs ; 39(6): 1587-1597, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34180037

RESUMEN

Aim The oral MDM2 antagonist idasanutlin inhibits the p53-MDM2 interaction, enabling p53 activation, tumor growth inhibition, and increased survival in xenograft models. Methods We conducted a Phase I study of idasanutlin (microprecipitate bulk powder formulation) to determine the maximum tolerated dose (MTD), safety, pharmacokinetics, pharmacodynamics, food effect, and clinical activity in patients with advanced malignancies. Schedules investigated were once weekly for 3 weeks (QW × 3), once daily for 3 days (QD × 3), or QD × 5 every 28 days. We also analyzed p53 activation and the anti-proliferative effects of idasanutlin. Results The dose-escalation phase included 85 patients (QW × 3, n = 36; QD × 3, n = 15; QD × 5, n = 34). Daily MTD was 3200 mg (QW × 3), 1000 mg (QD × 3), and 500 mg (QD × 5). Most common adverse events were diarrhea, nausea/vomiting, decreased appetite, and thrombocytopenia. Dose-limiting toxicities were nausea/vomiting and myelosuppression; myelosuppression was more frequent with QD dosing and associated with pharmacokinetic exposure. Idasanutlin exposure was approximately dose proportional at low doses, but less than dose proportional at > 600 mg. Although inter-patient variability in exposure was high with all regimens, cumulative idasanutlin exposure over the whole 28-day cycle was greatest with a QD × 5 regimen. No major food effect on pharmacokinetic exposure occurred. MIC-1 levels were higher with QD dosing, increasing in an exposure-dependent manner. Best response was stable disease in 30.6% of patients, prolonged (> 600 days) in 2 patients with sarcoma. Conclusions Idasanutlin demonstrated dose- and schedule-dependent p53 activation with durable disease stabilization in some patients. Based on these findings, the QD × 5 schedule was selected for further development. TRIAL REGISTRATION: NCT01462175 (ClinicalTrials.gov), October 31, 2011.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , para-Aminobenzoatos/farmacología , para-Aminobenzoatos/uso terapéutico , Adulto , Anciano , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Neoplasias/patología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Pirrolidinas/efectos adversos , Pirrolidinas/farmacocinética , para-Aminobenzoatos/efectos adversos , para-Aminobenzoatos/farmacocinética
2.
Biopharm Drug Dispos ; 41(3): 126-148, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32319119

RESUMEN

Calcitriol or 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ] is the active ligand of the vitamin D receptor (VDR) that plays a vital role in health and disease. Vitamin D is converted to the relatively inactive metabolite, 25-hydroxyvitamin D3 [25(OH)D3 ], by CYP27A1 and CYP2R1 in the liver, then to 1,25(OH)2 D3 by a specific, mitochondrial enzyme, CYP27B1 (1α-hydroxylase) that is present primarily in the kidney. The degradation of both metabolites is mostly carried out by the more ubiquitous mitochondrial enzyme, CYP24A1. Despite the fact that calcitriol inhibits its formation and degradation, allometric scaling revealed strong interspecies correlation of the net calcitriol clearance (CL estimated from dose/AUC∞ ), production rate (PR), and basal, plasma calcitriol concentration with body weight (BW). PBPK-PD (physiologically based pharmacokinetic-pharmacodynamic) modeling confirmed the dynamic interactions between calcitriol and Cyp27b1/Cyp24a1 on the decrease in the PR and increase in CL in mice. Close scrutiny of the literature revealed that basal levels of calcitriol had not been taken into consideration for estimating the correct AUC∞ and CL after exogenous calcitriol dosing in both animals and humans, leading to an overestimation of AUC∞ and underestimation of the plasma CL. In humans, CL was decreased in chronic kidney disease but increased in cancer. Collectively, careful pharmacokinetic data analysis and improved definition are achieved with PBPK-PD modeling, which embellishes the complexity of dose, enzyme regulation, and disease conditions. Allometric scaling and PBPK-PD modeling were applied successfully to extend the PBPK model to predict calcitriol kinetics in cancer patients.


Asunto(s)
Vitamina D/análogos & derivados , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Cinética , Ratones , Modelos Biológicos , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacocinética
3.
J Cardiothorac Vasc Anesth ; 34(3): 782-790, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31455576

RESUMEN

Tranexamic acid reduces blood loss and transfusion requirements with no significant thrombotic adverse effects. Postoperative seizures have been seen in cardiac surgical patients in association with patient (advanced age, underlying neurologic disease, chronic kidney disease); surgical (open cardiac procedures, long bypass times); and drug (high tranexamic acid dose) risk factors. Tranexamic acid dosing regimens should be decreased in patients with chronic kidney dysfunction secondary to reduced clearance and drug accumulation. Optimal dosing for cardiac surgical patients has been recommended. Additional research is required to determine dosing regimens in major noncardiac surgery and plasma concentration levels associated with inducing seizures.


Asunto(s)
Antifibrinolíticos , Procedimientos Quirúrgicos Cardíacos , Ácido Tranexámico , Pérdida de Sangre Quirúrgica , Transfusión Sanguínea , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Puente Cardiopulmonar , Humanos
5.
Anesth Analg ; 127(6): 1323-1332, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29309319

RESUMEN

BACKGROUND: Tranexamic acid (TXA) is a common antifibrinolytic agent used to minimize bleeding in cardiac surgery. Up to 50% cardiac surgical patients have chronic renal dysfunction (CRD). Optimal dosing of TXA in CRD remains poorly investigated. This is important as TXA is renally eliminated with accumulation in CRD. High TXA doses are associated with postoperative seizures. This study measures plasma TXA concentrations in CRD cardiac surgical patients for pharmacokinetic modeling and dose adjustment recommendations. METHODS: This prospective cohort study enrolled 48 patients with stages 1-5 CRD, classified by Kidney Disease Outcome Quality Initiative. Patients were separated into 2 treatment groups. A "low-risk" group underwent simple aortocoronary bypass or single-valve repair/replacement and received a 50 mg/kg TXA bolus. A "high-risk" group underwent redo, aortic, multiple valve or combination surgery and received the Blood Conservation Using Anti-fibrinolytics Trial dosing regimen (loading dose 30 mg/kg, infusion 16 mg/kg/h with 2 mg/kg in pump prime). Primary outcome identified changes in TXA clearance and distribution volume, which provided the rationale for dose adjustment. Descriptive clinical outcomes assessed postoperative seizures, blood loss, ischemic-thrombotic complications, in-hospital mortality, and length of hospital stay. RESULTS: TXA concentrations were elevated and sustained above the therapeutic threshold for approximately 12 hours in high-risk stages 3-5 groups, in accordance to CRD severity. CONCLUSIONS: Using a pharmacokinetic model, we propose a simple new TXA dosing regimen that optimizes maximal antifibrinolysis and avoids excessive drug dosing.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Esquema de Medicación , Insuficiencia Renal Crónica/tratamiento farmacológico , Ácido Tranexámico/farmacología , Ácido Tranexámico/farmacocinética , Anciano , Antifibrinolíticos/farmacocinética , Antifibrinolíticos/farmacología , Puente Cardiopulmonar/efectos adversos , Femenino , Mortalidad Hospitalaria , Humanos , Isquemia/prevención & control , Tiempo de Internación , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Estudios Prospectivos , Calidad de la Atención de Salud , Riesgo , Convulsiones/prevención & control , Trombosis/prevención & control , Resultado del Tratamiento
6.
Drug Metab Dispos ; 46(1): 75-87, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084783

RESUMEN

We expanded our published physiologically based pharmacokinetic model (PBPK) on 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], ligand of the vitamin D receptor (VDR), to appraise VDR-mediated pharmacodynamics in mice. Since 1,25(OH)2D3 kinetics was best described by a segregated-flow intestinal model (SFM) that described a low/partial intestinal (blood/plasma) flow to enterocytes, with feedback regulation of its synthesis (Cyp27b1) and degradation (Cyp24a1) enzymes, this PBPK(SFM) model was expanded to describe the VDR-mediated changes (altered/basal mRNA expression) of target genes/responses with the indirect response model. We examined data on 1) renal Trpv5 (transient receptor potential cation channel, subfamily V member 5) and Trpv6 and intestinal Trpv6 (calcium channels) for calcium absorption; 2) liver 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (Hmgcr) and cytochrome 7α-hydroxylase (Cyp7a1) for cholesterol synthesis and degradation, respectively; and 3) renal and brain Mdr1 (multidrug-resistance protein that encodes the P-glycoprotein) for digoxin disposition after repetitive intraperitoneal doses of 120 pmol 1,25(OH)2D3 Fitting, performed with modeling software, yielded reasonable prediction of a dominant role of intestinal Trpv6 in calcium absorption, circadian rhythm that is characterized by simple cosine models for Hmgcr and Cyp7a1 on liver cholesterol, and brain and renal Mdr1 on tissue efflux of digoxin. Fitted parameters on the Emax, EC50, and turnover rate constants of VDR-target genes [zero-order production (kin) and first-order degradation (kout) rate constants] showed low coefficients of variation and acceptable median prediction errors (4.5%-40.6%). Sensitivity analyses showed that the Emax and EC50 values are key parameters that could influence the pharmacodynamic responses. In conclusion, the PBPK(SFM)-pharmacodynamic model successfully characterized VDR gene activation and serves as a useful tool to predict the therapeutic effects of 1,25(OH)2D3.


Asunto(s)
Calcitriol/farmacología , Modelos Biológicos , Receptores de Calcitriol/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Calcitriol/uso terapéutico , Calcio/metabolismo , Colesterol/análisis , Colesterol/metabolismo , Digoxina/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , ARN Mensajero/metabolismo , Sensibilidad y Especificidad , Canales Catiónicos TRPV/metabolismo
7.
Biopharm Drug Dispos ; 38(5): 326-339, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28102538

RESUMEN

The liver and kidney functions of recipients of liver transplantation (LT) surgery with heart beating (HBD, n = 13) or living donors (LD, n = 9) with different cold ischemia times were examined during the neohepatic phase for the elimination of rocuronium bromide (ROC, cleared by liver and kidney) and tranexamic acid (TXA, cleared by kidney). Solid phase micro-extraction and LC-MS/MS was applied to determine the plasma concentrations of ROC and TXA, and creatinine was determined by standard laboratory methods. Metabolomics and the relative expressions of miR-122, miR-148a and γ-glutamyltranspeptidase (GGT), liver injury biomarkers, were also measured. The ROC clearance for HBD was significantly lower than that for LD (0.147 ± 0.052 vs. 0.265 ± 0.148 ml·min-1 ·g-1 liver) after intravenous injection (0.6 mg·kg-1 ). The clearance of TXA, a compound cleared by glomerular filtration, given as a 1 g bolus followed by infusion (10 mg·kg-1 ·h-1 ), was similar between HBD and LD groups (~ 1 ml·min-1 ·kg-1 ). The TXA clearance in both groups was lower than the GFR, showing a small extent of hepatorenal coupling. The miR-122 and miR-148a expressions were similar for the HBD and LD groups, whereas GGT expression was significantly increased for HBD. The lower ROC clearance and the higher GGT levels in the HBD group of longer cold ischemia times performed worse than the LD group during the neophase. Metabololmics further showed clusters of bile acids, phospholipids and lipid ω-oxidation products for the LD and HBD groups. In conclusion, ROC CL and GGT expression, and metabolomics could serve as sensitive indices of early graft function. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Fallo Hepático , Trasplante de Hígado , Donantes de Tejidos , Adulto , Anciano , Androstanoles/sangre , Androstanoles/farmacocinética , Biomarcadores/análisis , Femenino , Humanos , Fallo Hepático/genética , Fallo Hepático/metabolismo , Masculino , Metabolómica , MicroARNs/genética , Persona de Mediana Edad , Modelos Biológicos , Proyectos Piloto , Rocuronio , Ácido Tranexámico/sangre , Ácido Tranexámico/farmacocinética , gamma-Glutamiltransferasa/genética
8.
Biopharm Drug Dispos ; 38(3): 231-250, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27977852

RESUMEN

Merits of the segregated flow model (SFM), highlighting the intestine as inert serosa and active enterocyte regions, with a smaller fractional (fQ < 0.3) intestinal flow (QI ) perfusing the enterocyte region, are described. Less drug in the circulation reaches the enterocytes due to the lower flow (fQ QI ) in comparison with drug administered into the gut lumen, fostering the idea of route-dependent intestinal removal. The SFM has been found superior to the traditional model (TM), which views the serosa and enterocytes totally as a well-mixed tissue perfused by 100% of the intestinal flow, QI . The SFM model is able to explain the lower extents of intestinal metabolism of enalapril, morphine and midazolam with i.v. vs. p.o. dosing. For morphine, the urine/bile ratio of the metabolite, morphine glucuronide MGurineMGbile for p.o. was 2.6× that of i.v. This was due to the higher proportion of intestinally formed morphine glucuronide, appearing more in urine than in bile due to its low permeability and greater extent of intestinal formation with p.o. administration. By contrast, the TM predicted the same MGurineMGbile for p.o. vs. i.v. The TM predicted that the contributions of the intestine:liver to first-pass removal were 46%:54% for both p.o. and i.v. The SFM predicted same 46%:54% (intestine:liver) for p.o., but 9%:91% for i.v. By contrast, the kinetics of codeine, the precursor of morphine, was described equally well by the SFM- and TM-PBPK models, a trend suggesting that intestinal metabolism of codeine is negligible. Fits to these PBPK models further provide insightful information towards metabolite formation: available fractions and the fractions of hepatic and total clearances that form the metabolite in question. The SFM-PBPK model is useful to identify not only the presence of intestinal metabolism but the contributions of the intestine and liver for metabolite formation. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Codeína/farmacocinética , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Modelos Biológicos , Morfina/farmacocinética , Administración Intravenosa , Administración Oral , Animales , Bilis/metabolismo , Codeína/administración & dosificación , Humanos , Morfina/administración & dosificación
9.
Drug Metab Dispos ; 44(7): 1123-38, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27098743

RESUMEN

We used the intestinal segregated flow model (SFM) versus the traditional model (TM), nested within physiologically based pharmacokinetic (PBPK) models, to describe the biliary and urinary excretion of morphine 3ß-glucuronide (MG) after intravenous and intraduodenal dosing of morphine in rats in vivo. The SFM model describes a partial (5%-30%) intestinal blood flow perfusing the transporter- and enzyme-rich enterocyte region, whereas the TM describes 100% flow perfusing the intestine as a whole. For the SFM, drugs entering from the circulation are expected to be metabolized to lesser extents by the intestine due to the segregated flow, reflecting the phenomenon of shunting and route-dependent intestinal metabolism. The poor permeability of MG crossing the liver or intestinal basolateral membranes mandates that most of MG that is excreted into bile is hepatically formed, whereas MG that is excreted into urine originates from both intestine and liver metabolism, since MG is effluxed back to blood. The ratio of MG amounts in urine/bile [Formula: see text] for intraduodenal/intravenous dosing is expected to exceed unity for the SFM but approximates unity for the TM. Compartmental analysis of morphine and MG data, without consideration of the permeability of MG and where MG is formed, suggests the ratio to be 1 and failed to describe the kinetics of MG. The observed intraduodenal/intravenous ratio of [Formula: see text] (2.55 at 4 hours) was better predicted by the SFM-PBPK (2.59 at 4 hours) and not the TM-PBPK (1.0), supporting the view that the SFM is superior for the description of intestinal-liver metabolism of morphine to MG. The SFM-PBPK model predicts an appreciable contribution of the intestine to first pass M metabolism.


Asunto(s)
Duodeno/irrigación sanguínea , Duodeno/metabolismo , Circulación Hepática , Hígado/irrigación sanguínea , Hígado/metabolismo , Modelos Biológicos , Derivados de la Morfina/farmacocinética , Morfina/farmacocinética , Circulación Esplácnica , Administración Intravenosa , Administración Oral , Animales , Permeabilidad de la Membrana Celular , Eliminación Hepatobiliar , Inactivación Metabólica , Masculino , Morfina/administración & dosificación , Morfina/sangre , Morfina/orina , Derivados de la Morfina/sangre , Derivados de la Morfina/orina , Ratas Sprague-Dawley , Flujo Sanguíneo Regional , Eliminación Renal
10.
Drug Metab Dispos ; 44(2): 189-208, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26586377

RESUMEN

1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3] concentrations are regulated by renal CYP27B1 for synthesis and CYP24A1 for degradation. Published plasma and tissue 1,25(OH)2D3 concentrations and mRNA fold change expression of Cyp24a1 and Cyp27b1 following repetitive i.p. injections to C57BL/6 mice (2.5 µg × kg(-1) every 2 days for 4 doses) were fitted with a minimal and full physiologically-based pharmacokinetic-pharmacodynamic models (PBPK-PD). The minimal physiologically-based pharmacokinetic-pharmacodynamic linked model (mPBPK-PD) related Cyp24a1 mRNA fold changes to linear changes in tissue/tissue baseline 1,25(OH)2D3 concentration ratios, whereas the full physiologically-based pharmacokinetic-pharmacodynamic model (PBPK-PD) related measured tissue Cyp24a1 and Cyp27b1 fold changes to tissue 1,25(OH)2D3 concentrations with indirect response, sigmoidal maximal stimulatory effect/maximal inhibitory effect functions. Moreover, the intestinal segregated flow model (SFM) that describes a low and partial intestinal (blood/plasma) flow to enterocytes was nested within both models for comparison with the traditional model for intestine (TM) where the entire flow perfuses the intestine. Both the mPBPK(SFM)-PD and full PBPK(SFM)-PD models described the i.p. plasma and tissue 1,25(OH)2D3 concentrations and fold changes in mRNA expression significantly better than the TM counterparts with F test comparisons. The full PBPK(SFM)-PD fits showed estimates with good precision (lower percentage of coefficient of variation), and the model was more robust in predicting data from escalating i.v. doses (2, 60, and 120 pmol) and the rebound in 1,25(OH)2D3 tissue concentrations after dosing termination. The full PBPK(SFM)-PD model performed the best among the tested models for describing the complex pharmacokinetic-pharmacodynamic interplay among Cyp27b1, Cyp24a1, and 1,25(OH)2D3.


Asunto(s)
Calcitriol/metabolismo , Vitamina D/análogos & derivados , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Animales , Enterocitos/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo
12.
Drug Metab Dispos ; 43(4): 631-45, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25650380

RESUMEN

We applied physiologically based pharmacokinetic (PBPK) modeling to study the dose-dependent metabolism and excretion of verapamil and its preformed metabolite, norverapamil, to unravel the kinetics of norverapamil formation via N-demethylation. Various initial verapamil (1, 50, and 100 µM) and preformed norverapamil (1.5 and 5 µM) concentrations, perfused at 12 ml/min, were investigated in the perfused rat liver preparation. Perfusate and bile were collected over 90 minutes, and livers were harvested at the end of perfusion for high-performance liquid chromatography analysis. After correction for the adsorption of 10%-25% dose verapamil and norverapamil onto Tygon tubing and binding to albumin and red blood cell, fitting of verapamil and formed and preformed norverapamil data with ADAPT5 revealed nonlinearity for protein binding, N-demethylation (V(max,met1)(VER --> NOR) = 96.6 ± 33.4 nmol/min; K(m,met1)(VER --> NOR) = 10.4 ± 4.1 µM), formation of other metabolites (V(max,met2(VER -->others) 288 ± 51 nmol/min; K(m.met2)(VER -->others )= 14.1 ± 4.9 µM), as well as biliary excretion (V(max,sec)(VER)= 0.911 ± 0.505 nmol/min; K(m,sec)(VER) = 4.75 ± 2.29 µM). The hepatic clearance of verapamil (CL(L)(VER) decreased with the dose (8.16-10.2 ml/min), with values remaining high relative to perfusate blood flow rate among the doses. The hepatic clearance of preformed norverapamil (11 ml/min) remained unchanged for the concentrations studied and approximated perfusate blood flow rate, suggesting a high norverapamil extraction ratio. The fractional formation of norverapamil and biliary excretion of verapamil based on fitted constants were 31.1% and 0.64% of CL(L)(VER), respectively. Enantiomeric disposition and auto-inhibition of verapamil failed to perturb these estimaties according to PBPK modeling, due to the low values of the Michaelis-Menten constant, Km, and inhibition parameter, kI.


Asunto(s)
Eritrocitos/metabolismo , Hígado/metabolismo , Modelos Biológicos , Verapamilo/análogos & derivados , Animales , Proteínas Sanguíneas/metabolismo , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Masculino , Tasa de Depuración Metabólica , Dinámicas no Lineales , Perfusión , Unión Proteica , Ratas Sprague-Dawley , Estereoisomerismo , Factores de Tiempo , Distribución Tisular , Verapamilo/sangre , Verapamilo/química , Verapamilo/metabolismo , Verapamilo/farmacocinética
13.
Biopharm Drug Dispos ; 36(5): 294-307, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25704361

RESUMEN

Tranexamic acid (TXA), an effective anti-fibrinolytic agent that is cleared by glomerular filtration, is used widely for cardiopulmonary bypass (CPB) surgery. However, an effective dosing regimen has not been fully developed in patients with renal impairment. The aims of this study were to characterize the inter-patient variability associated with pharmacokinetic parameters and to recommend a new dosing adjustment based on the BART dosing regimen for CPB patients with chronic renal dysfunction (CRD). Recently published data on CPB patients with normal renal function (n = 15) were re-examined with a two-compartment model using the ADAPT5 and NONMEMVII to identify covariates that explain inter-patient variability and to ascertain whether sampling strategies might affect parameter estimation. A series of simulations was performed to adjust the BART dosing regimen for CPB patients with renal impairment. Based on the two-compartmental model, the number of samples obtained after discontinuation of TXA infusion was found not to be critical in parameter estimation (p > 0.05). Both body weight and creatinine clearance were identified as significant covariates (p < 0.005). Simulations showed significantly higher than normal TXA concentrations in CRD patients who received the standard dosing regimen in the BART trial. Adjustment of the maintenance infusion rate based on the percent reduction in renal clearance resulted in predicted plasma TXA concentrations that were safe and therapeutic (~100 mg·L(-1) ). Our proposed dosing regimen, with consideration of renal function, is predicted to maintain effective target plasma concentrations below those associated with toxicity for patients with renal failure for CPB.


Asunto(s)
Antifibrinolíticos/farmacocinética , Riñón/metabolismo , Modelos Biológicos , Insuficiencia Renal/metabolismo , Ácido Tranexámico/farmacocinética , Anciano , Puente Cardiopulmonar , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...