Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cell Commun Signal ; 22(1): 92, 2024 02 01.
Article En | MEDLINE | ID: mdl-38303059

Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.


Egtazic Acid/analogs & derivatives , Retinal Degeneration , Sirtuins , Mice , Animals , Retinal Degeneration/metabolism , Calpain/metabolism , Sodium-Calcium Exchanger , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Cell Death , Sirtuins/metabolism
2.
Int Immunopharmacol ; 121: 110409, 2023 Aug.
Article En | MEDLINE | ID: mdl-37301122

BACKGROUND: Osteoarthritis (OA) is a common disease of elderly individuals, with an unclear pathogenesis and limited treatment options to date. Inflammation occurs prominently in osteoarthritis, thereby making anti-inflammatory treatments promising in clinical outcomes. Therefore, it is of diagnostic and therapeutic significance to explore more inflammatory genes. METHOD: In this study, appropriate datasets were first acquired through gene set enrichment analysis (GSEA), followed by inflammation-related genes through weighted gene coexpression network analysis (WGCNA). Two machine learning algorithms (random forest-RF and support vector machine-recursive feature elimination, SVM-RFE) were used to capture the hub genes. In addition, two genes negatively associated with inflammation and osteoarthritis were identified. Afterwards, these genes were verified through experiments and network pharmacology. Due to the association between inflammation and many diseases, the expression levels of the above genes in various inflammatory diseases were determined through literature and experiments. RESULT: Two hub genes closely related to osteoarthritis and inflammation were obtained, namely, lysyl oxidase-like 1 (LOXL1) and pituitary tumour-transforming gene (PTTG1), which were shown to be highly expressed in osteoarthritis according to the literature and experiments. However, the expression levels of receptor expression-enhancing protein (REEP5) and cell division cycle protein 14B (CDC14B) remained unchanged in osteoarthritis. This finding was consistent with our verification from the literature and experiments that some genes were highly expressed in numerous inflammation-related diseases, while REEP5 and CDC14B were almost unchanged. Meanwhile, taking PTTG1 as an example, we found that inhibition of PTTG1 expression could suppress the expression of inflammatory factors and protect the extracellular matrix through the microtubule-associated protein kinase (MAPK) signalling pathway. CONCLUSIONS: LOXL1 and PTTG1 were highly expressed in some inflammation-related diseases, while that of REEP5 and CDC14B were almost unchanged. PTTG1 may be a potential target for the treatment of osteoarthritis.


Inflammation , Osteoarthritis , Aged , Humans , Inflammation/genetics , Osteoarthritis/genetics , Computational Biology , Gene Expression , Algorithms , Dual-Specificity Phosphatases
3.
Chem Commun (Camb) ; 57(56): 6907-6910, 2021 Jul 13.
Article En | MEDLINE | ID: mdl-34151913

Five new zero-dimensional hybrid manganese halides based on discrete [MnCl4]2- tetrahedrons were prepared and used as highly efficient green-light emitters. Through rational management of organic cations to tailor the MnMn separation distances between neighboring [MnCl4]2- tetrahedrons, the photoluminescence quantum yield increased significantly from 7.98% to 81.11%.

...