Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 360: 121134, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749137

RESUMEN

Chlorophyll a (Chla) concentration can be used as an indicator of algal biomass, and the accumulation of algal biomass in water column is essential for the emergence of surface blooms. By using Moderate Resolution Imaging Spectrometer (MODIS) data, a machine learning algorithm was previously developed to assess algal biomass within the euphotic depth (Beu). Here, a long-term Beu dataset of Lake Taihu from 2003 to 2020 was generated to examine its spatio-temporal dynamics, sensitivity to environmental factors, and variations in comparison to the surface algal bloom area. During this period, the daily Beu (total Beu within the whole lake) exhibited temporal fluctuations between 40 and 90 t Chla, with an annual average of 63.32 ± 5.23 t Chla. Notably, it reached its highest levels in 2007 (72.34 t Chla) and 2017 (73.57 t Chla). Moreover, it demonstrated a clear increasing trend of 0.197 t Chla/y from 2003 to 2007, followed by a slight decrease of 0.247 t Chla/y after 2017. Seasonal variation showed a bimodal annual cycle, characterized by a minor peak in March âˆ¼ April and a major peak in July âˆ¼ September. Spatially, the average pixel-based Beu (total Beu of a unit water column) ranged from 21.17 to 49.85 mg Chla, with high values predominantly distributed in the northwest region and low values in the central region. The sensitivity of Beu to environmental factors varies depending on regions and time scales. Temperature has a significant impact on monthly variation (65.73%), while the level of nutrient concentrations influences annual variation (55.06%). Wind speed, temperature, and hydrodynamic conditions collectively influence the spatial distribution of Beu throughout the entire lake. Algal bloom biomass can capture trend changes in two mutant years as well as bimodal phenological changes compared to surface algal bloom area. This study can provide a basis for scientific evaluation of water environment and a reference for monitoring algal biomass in other similar eutrophic lakes.


Asunto(s)
Biomasa , Eutrofización , Lagos , Fitoplancton , Monitoreo del Ambiente/métodos , Clorofila A/análisis , Imágenes Satelitales , Estaciones del Año
2.
Water Res ; 246: 120685, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804806

RESUMEN

Phytoplankton-induced lake eutrophication has drawn ongoing interest on a global scale. One of the most popular remote sensing satellite data for observing long-term dynamic changes in phytoplankton is Moderate-resolution Imaging Spectroradiometer (MODIS). However, it is worth noting that MODIS provides two images with different transit times: Terra (local time, about 10:30 am) and Aqua (local time, about 1:30 pm), which may result in a considerable bias in monitoring phytoplankton bloom areas due to the rapid migration of phytoplankton under wind or hydrodynamic conditions. To analyze this quantitatively, we selected MODIS Terra and Aqua images to generate datasets of phytoplankton bloom areas in Lake Taihu from 2003 to 2022. The results showed that Terra more frequently detected larger ranges of phytoplankton blooms than Aqua, whether on daily, monthly, or annual scales. In addition, long-term trend changes, seasonal characteristics, and abrupt years also varied with different transit times. Terra detected mutation years earlier, while Aqua displayed more pronounced seasonal characteristics. There were also differences in sensitivity to climate factors, with Terra being more responsive to temperature and wind speed on monthly and annual scales, while Aqua was more sensitive to nutrient and meteorological factors. These conclusions have also been further confirmed in Lake Chaohu, Lake Dianchi, and Lake Hulun. In conclusion, our findings strongly advocate for a linear relationship to fit Terra to Aqua results to mitigate long-term monitoring errors of phytoplankton blooms in inland lakes (R2 = 0.70, RMSE = 101.56). It is advised to utilize satellite data with transit times between 10 am and 1 pm to track phytoplankton bloom changes and to consider the diverse applications resulting from the transit times of Terra and Aqua.


Asunto(s)
Lagos , Fitoplancton , Monitoreo del Ambiente/métodos , Viento , Temperatura , Eutrofización , China
3.
Sci Total Environ ; 880: 163357, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028659

RESUMEN

Algal blooms are a widespread issue in eutrophic lakes. Compared with the satellite-derived surface algal bloom area and chlorophyll-a (Chla) concentration, algae biomass is a more stable way to reflect water quality. Although satellite data have been adopted to observe the water column integrated algal biomass, the previous methods mostly are empirical algorithms, which are not stable enough for widespread use. This paper proposed a machine learning algorithm based on Moderate Resolution Imaging Spectrometer (MODIS) data to estimate the algal biomass, which was successfully applied to a eutrophic lake in China, Lake Taihu. This algorithm was developed by linking Rayleigh-corrected reflectance to in situ algae biomass data in Lake Taihu (n = 140), and the different mainstream machine learning (ML) methods were compared and validated. The partial least squares regression (PLSR) (R2 = 0.67, mean absolute percentage error (MAPE) = 38.88 %) and support vector machines (SVM) (R2 = 0.46, MAPE = 52.02 %) performed poor satisfactory. In contrast, random forest (RF) and extremely gradient boosting tree (XGBoost) algorithms had higher accuracy (RF: R2 = 0.85, MAPE = 22.68 %; XGBoost: R2 = 0.83, MAPE = 24.06 %), demonstrating greater application potential in algal biomass estimation. Field biomass data were further used to estimate the RF algorithm, which showed acceptable precision (R2 = 0.86, MAPE < 7 mg Chla). Subsequently, sensitivity analysis showed that the RF algorithm was not sensitive to high suspension and thickness of aerosols (rate of change <2 %), and inter-day and consecutive days verification showed stability (rate of change <5 %). The algorithm was also extended to Lake Chaohu (R2 = 0.93, MAPE = 18.42 %), demonstrating its potential in other eutrophic lakes. This study for algae biomass estimation provides technical means with higher accuracy and greater universality for the management of eutrophic lakes.


Asunto(s)
Monitoreo del Ambiente , Lagos , Biomasa , Clorofila A , Eutrofización , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA