Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233000

RESUMEN

INTRODUCTION: Developmental competence of oocytes matured in vitro is limited due to a lack of complete understanding of metabolism and metabolic gene expression during oocyte maturation and embryo development. Conventional metabolic analysis requires a large number of samples and is not efficiently applicable in oocytes and early embryos, thereby posing challenges in identifying key metabolites and regulating their in vitro culture system. OBJECTIVES: To enhance the developmental competence of sheep oocytes, this study aimed to identify and supplement essential metabolites that were deficient in the culture systems. METHODS: The metabolic characteristics of oocytes and embryos were determined using ultrasensitive metabolomics analysis on trace samples and single-cell RNA-seq. By conducting integrated analyses of metabolites in cells (oocytes and embryos) and their developmental microenvironment (follicular fluid, oviductal fluid, and in vitro culture systems), we identified key missing metabolites in the in vitro culture systems. In order to assess the impact of these key missing metabolites on oocyte development competence, we performed in vitro culture experiments. Furthermore, omics analyses were employed to elucidate the underlying mechanisms. RESULTS: Our findings demonstrated that betaine, carnitine and creatine were the key missing metabolites in vitro culture systems and supplementation of betaine and L-carnitine significantly improved the blastocyst formation rate (67.48% and 48.61%). Through in vitro culture experiments and omics analyses, we have discovered that L-carnitine had the potential to promote fatty acid oxidation, reduce lipid content and lipid peroxidation level, and regulate spindle morphological grade through fatty acid degradation pathway. Additionally, betaine may participate in methylation modification and osmotic pressure regulation, thereby potentially improving oocyte maturation and early embryo development in sheep. CONCLUSION: Together, these analyses identified key metabolites that promote ovine oocyte maturation and early embryo development, while also providing a new viewpoint to improve clinical applications such as oocyte maturation or embryo culture.

2.
Genet Sel Evol ; 56(1): 60, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227836

RESUMEN

BACKGROUND: Accurate breed identification is essential for the conservation and sustainable use of indigenous farm animal genetic resources. In this study, we evaluated the phylogenetic relationships and genomic breed compositions of 13 sheep breeds using SNP and InDel data from whole genome sequencing. The breeds included 11 Chinese indigenous and 2 foreign commercial breeds. We compared different strategies for breed identification with respect to different marker types, i.e. SNPs, InDels, and a combination of SNPs and InDels (named SIs), different breed-informative marker detection methods, and different machine learning classification methods. RESULTS: Using WGS-based SNPs and InDels, we revealed the phylogenetic relationships between 11 Chinese indigenous and two foreign sheep breeds and quantified their purities through estimated genomic breed compositions. We found that the optimal strategy for identifying these breeds was the combination of DFI_union for breed-informative marker detection, which integrated the methods of Delta, Pairwise Wright's FST, and Informativeness for Assignment (namely DFI) by merging the breed-informative markers derived from the three methods, and KSR for breed assignment, which integrated the methods of K-Nearest Neighbor, Support Vector Machine, and Random Forest (namely KSR) by intersecting their results. Using SI markers improved the identification accuracy compared to using SNPs or InDels alone. We achieved accuracies over 97.5% when using at least the 1000 most breed-informative (MBI) SI markers and even 100% when using 5000 SI markers. CONCLUSIONS: Our results provide not only an important foundation for conservation of these Chinese local sheep breeds, but also general approaches for breed identification of indigenous farm animal breeds.


Asunto(s)
Cruzamiento , Mutación INDEL , Polimorfismo de Nucleótido Simple , Ovinos , Animales , Cruzamiento/métodos , China , Genética de Población/métodos , Filogenia , Ovinos/genética , Secuenciación Completa del Genoma/métodos , Secuenciación Completa del Genoma/veterinaria
3.
J Environ Manage ; 365: 121586, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941853

RESUMEN

Alpine grasslands are distributed widely on high-elevated ranges and plateaus from the wet tropics to polar regions, accounting for approximately 3% of the world's land area. The Qinghai-Tibetan Plateau (QTP) is the highest and largest plateau in the world, and approximately 60% of the plateau consists of alpine grassland, which is used mainly for grazing animals. Livestock structure was determined in Guinan (GN), Yushu (YS) and Maqu counties (MQ) on the QTP by interviewing 235 local pastoralists. Based on data collected from GN, the livestock carrying capacity was calculated using herbage dry matter biomass intake (LCCm) by the livestock, and the metabolizable energy yield (LCCe) and digestible crude protein (LCCp) available in pasture. The pasture area per household differed among the regions of the QTP, which was the main reason for the difference in livestock stocking rate. The householders raised the appropriate proportion of breeding females and young yaks and sheep in GN and MQ, but not in YS, to maintain a constant turnover. Most pasture in YS was used at the community level, especially in summer. The calculated carrying capacities based on metabolizable energy yield (LCCe) of the pasture and dry matter biomass (LCCm) were similar in most months except for August, when the value of LCCe was higher than LCCm. Based on the digestible protein of the pasture, the calculated livestock carrying capacity overestimated the actual carrying capacity during the herbage growing season from May to September. Appropriate practices should be taken in different regions of QTP, such as providing supplementary feed, especially protein, during the forage non-growing season. Livestock carrying capacity should be adjusted dynamically, and calculated by a number of parameters. The stocking rate should be controlled to optimize livestock production and curb or minimize grassland degradation to generate a sustainable system. This study examined the grasslands and LCC on the QTP, but the results could be applied to grasslands worldwide.


Asunto(s)
Pradera , Ganado , Animales , Tibet , Biomasa , Crianza de Animales Domésticos
4.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724675

RESUMEN

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Asunto(s)
Infertilidad Masculina , Células Intersticiales del Testículo , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Testículo , Testosterona , Animales , Masculino , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/patología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Ratones , Testosterona/metabolismo , Testículo/metabolismo , Testículo/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Infertilidad Masculina/metabolismo , Diferenciación Celular/genética , Espermatogénesis/genética , Ratones Endogámicos C57BL , Ratones Noqueados
5.
J Dairy Sci ; 107(9): 7317-7336, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38642661

RESUMEN

Spermatogenesis is a continuous process in which functional sperm are produced through a series of mitotic and meiotic divisions and morphological changes in germ cells. The aberrant development and fate transitions of spermatogenic cells cause hybrid sterility in mammals. Cattle-yak, a hybrid animal between taurine cattle (Bos taurus) and yak (Bos grunniens), exhibits male-specific sterility due to spermatogenic failure. In the present study, we performed single-cell RNA sequencing analysis to identify differences in testicular cell composition and the developmental trajectory of spermatogenic cells between yak and cattle-yak. The composition and molecular signatures of spermatogonial subtypes were dramatically different between these 2 animals, and the expression of genes associated with stem cell maintenance, cell differentiation and meiotic entry was altered in cattle-yak, indicating the impairment of undifferentiated spermatogonial fate decisions. Cell communication analysis revealed that signaling within different spermatogenic cell subpopulations was weakened, and progenitor spermatogonia were unable to or delayed receiving and sending signals for transformation to the next stage in cattle-yak. Simultaneously, the communication between niche cells and germ cells was also abnormal. Collectively, we obtained the expression profiles of transcriptome signatures of different germ cells and testicular somatic cell populations at the single-cell level and identified critical regulators of spermatogonial differentiation and meiosis in yak and sterile cattle-yak. The findings of this study shed light on the genetic mechanisms that lead to hybrid sterility and speciation in bovid species.


Asunto(s)
Diferenciación Celular , Análisis de la Célula Individual , Espermatogénesis , Espermatogonias , Animales , Masculino , Bovinos , Espermatogonias/citología , Espermatogénesis/genética , Testículo/citología , Meiosis
6.
BMC Genomics ; 25(1): 138, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310206

RESUMEN

BACKGROUND: Spermatogonial stem cells (SSCs) are the foundation cells for continual spermatogenesis and germline regeneration in mammals. SSC activities reside in the undifferentiated spermatogonial population, and currently, the molecular identities of SSCs and their committed progenitors remain unclear. RESULTS: We performed single-cell transcriptome analysis on isolated undifferentiated spermatogonia from mice to decipher the molecular signatures of SSC fate transitions. Through comprehensive analysis, we delineated the developmental trajectory and identified candidate transcription factors (TFs) involved in the fate transitions of SSCs and their progenitors in distinct states. Specifically, we characterized the Asingle spermatogonial subtype marked by the expression of Eomes. Eomes+ cells contained enriched transplantable SSCs, and more than 90% of the cells remained in the quiescent state. Conditional deletion of Eomes in the germline did not impact steady-state spermatogenesis but enhanced SSC regeneration. Forced expression of Eomes in spermatogenic cells disrupted spermatogenesis mainly by affecting the cell cycle progression of undifferentiated spermatogonia. After injury, Eomes+ cells re-enter the cell cycle and divide to expand the SSC pool. Eomes+ cells consisted of 7 different subsets of cells at single-cell resolution, and genes enriched in glycolysis/gluconeogenesis and the PI3/Akt signaling pathway participated in the SSC regeneration process. CONCLUSIONS: In this study, we explored the molecular characteristics and critical regulators of subpopulations of undifferentiated spermatogonia. The findings of the present study described a quiescent SSC subpopulation, Eomes+ spermatogonia, and provided a dynamic transcriptional map of SSC fate determination.


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Testículo , Masculino , Animales , Ratones , Testículo/metabolismo , Espermatogonias , Espermatogénesis/genética , Células Madre , Diferenciación Celular/genética , Mamíferos/genética
7.
Dev Dyn ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063258

RESUMEN

BACKGROUND: Inhibitors of DNA binding (ID) proteins mainly inhibit gene expression and regulate cell fate decisions by interacting with E-proteins. All four ID proteins (ID1-4) are present in the testis, and ID4 has a particularly important role in spermatogonial stem cell fate determination. Several lines of evidence indicate that ID proteins are involved in meiosis; however, functional experiments have not been conducted to validate this observation. RESULTS: In this study, we report that ID2 is enriched in spermatocytes and that forced ID2 expression in germ cells causes defects in spermatogenesis. A detailed analysis demonstrated that Id2 overexpression (Id2 OE) decreased the total number of spermatogonia and changed the dynamics of meiosis progression. Specifically, spermatocytes were enriched in the zygotene stage, and the proportion of pachytene spermatocytes was significantly decreased, indicating defects in the zygotene-pachytene transition. The number of MLH1-positive foci per cell was decreased in pachytene spermatocytes from Id2 OE testes, suggesting abnormalities in recombination. Transcriptome analysis revealed that forced Id2 expression changed the expression of a list of genes mainly associated with meiosis and spermatid development. CONCLUSIONS: ID2 protein is expressed in spermatocytes, and its genetic ablation in the germline does not affect spermatogenesis, likely due to genetic compensation of its family members. However, forced Id2 expression changes meiosis progression and causes defects in spermiogenesis. These data provide important evidence that ID proteins play pivotal roles in male meiosis and spermatid development.

8.
Nat Commun ; 14(1): 6406, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827999

RESUMEN

Intense grazing may lead to grassland degradation on the Qinghai-Tibetan Plateau, but it is difficult to predict where this will occur and to quantify it. Based on a process-based ecosystem model, we define a productivity-based stocking rate threshold that induces extreme grassland degradation to assess whether and where the current grazing activity in the region is sustainable. We find that the current stocking rate is below the threshold in ~80% of grassland areas, but in 55% of these grasslands the stocking rate exceeds half the threshold. According to our model projections, positive effects of climate change including elevated CO2 can partly offset negative effects of grazing across nearly 70% of grasslands on the Plateau, but only in areas below the stocking rate threshold. Our analysis suggests that stocking rate that does not exceed 60% (within 50% to 70%) of the threshold may balance human demands with grassland protection in the face of climate change.


Asunto(s)
Ecosistema , Pradera , Humanos , Tibet , Cambio Climático
9.
Cell Biosci ; 13(1): 177, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749649

RESUMEN

BACKGROUND: Spermatogonial stem cells (SSCs) provide a foundation for robust and continual spermatogenesis in mammals. SSCs self-renew to maintain a functional stem cell pool and differentiate to supply committed progenitors. Metabolism acts as a crucial determinant of stem cell fates; however, factors linking metabolic programs to SSC development and maintenance are poorly understood. RESULTS: We analyzed the chromatin accessibility of undifferentiated spermatogonia at the single-cell level and identified 37 positive TF regulators that may have potential roles in dictating SSC fates. The transcription factor E4F1 is expressed in spermatogonia, and its conditional deletion in mouse germ cells results in progressive loss of the entire undifferentiated spermatogonial pool. Single-cell RNA-seq analysis of control and E4f1-deficient spermatogonia revealed that E4F1 acts as a key regulator of mitochondrial function. E4F1 binds to promotors of genes that encode components of the mitochondrial respiratory chain, including Ndufs5, Cox7a2, Cox6c, and Dnajc19. Loss of E4f1 function caused abnormal mitochondrial morphology and defects in fatty acid metabolism; as a result, undifferentiated spermatogonia were gradually lost due to cell cycle arrest and elevated apoptosis. Deletion of p53 in E4f1-deficient germ cells only temporarily prevented spermatogonial loss but did not rescue the defects in SSC maintenance. CONCLUSIONS: Emerging evidence indicates that metabolic signals dictate stem cell fate decisions. In this study, we identified a list of transcription regulators that have potential roles in the fate transitions of undifferentiated spermatogonia in mice. Functional experiments demonstrated that the E4F1-mediated transcription program is a crucial regulator of metabolism and SSC fate decisions in mammals.

10.
Sci Bull (Beijing) ; 68(17): 1928-1937, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517987

RESUMEN

Structural information of grassland changes on the Tibetan Plateau is essential for understanding alterations in critical ecosystem functioning and their underlying drivers that may reflect environmental changes. However, such information at the regional scale is still lacking due to methodological limitations. Beyond remote sensing indicators only recognizing vegetation productivity, we utilized multivariate data fusion and deep learning to characterize formation-based plant community structure in alpine grasslands at the regional scale of the Tibetan Plateau for the first time and compared it with the earlier version of Vegetation Map of China for historical changes. Over the past 40 years, we revealed that (1) the proportion of alpine meadows in alpine grasslands increased from 50% to 69%, well-reflecting the warming and wetting trend; (2) dominances of Kobresia pygmaea and Stipa purpurea formations in alpine meadows and steppes were strengthened to 76% and 92%, respectively; (3) the climate factor mainly drove the distribution of Stipa purpurea formation, but not the recent distribution of Kobresia pygmaea formation that was likely shaped by human activities. Therefore, the underlying mechanisms of grassland changes over the past 40 years were considered to be formation dependent. Overall, the first exploration for structural information of plant community changes in this study not only provides a new perspective to understand drivers of grassland changes and their spatial heterogeneity at the regional scale of the Tibetan Plateau, but also innovates large-scale vegetation study paradigm.


Asunto(s)
Ecosistema , Pradera , Humanos , Tibet , Cambio Climático , China
11.
Cell Rep ; 42(8): 112860, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494181

RESUMEN

Bidirectional communication between the developing conceptus and endometrium is essential for pregnancy recognition and establishment in ruminants. We dissect the transcriptomic dynamics of sheep conceptus and corresponding endometrium at pre- and peri-implantation stages using single-cell RNA sequencing. Spherical blastocysts contain five cell types, with 68.62% trophectoderm cells. Strikingly, elongated conceptuses differentiate into 17 cell types, indicating dramatic cell fate specifications. Cell-type-specific gene expression delineates the features of distinctive trophectoderm lineages and indicates that the transition from polar trophectoderm to trophoblast increases interferon-tau expression and likely drives elongation initiation. We identify 13 endometrium-derived cell types and elucidate their molecular responses to conceptus development. Integrated analyses uncover multiple paired transcripts mediating the dialogues between extraembryonic membrane and endometrium, including IGF2-IGF1R, FGF19-FGFR1, NPY-NPY1R, PROS1-AXL, and ADGRE5-CD55. These data provide insight into the molecular regulation of conceptus elongation and represent a valuable resource for functional investigations of pre- and peri-implantation ruminant development.

12.
Cell Mol Life Sci ; 80(8): 217, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468762

RESUMEN

Spermatogenesis is a complicated process of germ cell differentiation that occurs within the seminiferous tubule in the testis. Peritubular myoid cells (PTMCs) produce major components of the basement membrane that separates and ensures the structural integrity of seminiferous tubules. These cells secrete niche factors to promote spermatogonial stem cell (SSC) maintenance and mediate androgen signals to direct spermatid development. However, the regulatory mechanisms underlying the identity and function of PTMCs have not been fully elucidated. In the present study, we showed that the expression of pancreatic lipase-related protein 2 (Pnliprp2) was restricted in PTMCs in the testis and that its genetic ablation caused age-dependent defects in spermatogenesis. The fertility of Pnliprp2 knockout animals (Pnliprp2-/-) was normal at a young age but declined sharply beginning at 9 months. Pnliprp2 deletion impaired the homeostasis of undifferentiated spermatogonia and severely disrupted the development and function of spermatids. Integrated analyses of single-cell RNA-seq and metabolomics data revealed that glyceride metabolism was changed in PTMCs from Pnliprp2-/- mice. Further analysis found that 60 metabolites were altered in the sperm of the Pnliprp2-/- animals; notably, lipid metabolism was significantly dysregulated. Collectively, these results revealed that Pnliprp2 was exclusively expressed in PTMCs in the testis and played a novel role in supporting continual spermatogenesis in mice. The outcomes of these findings highlight the function of lipid metabolism in reproduction and provide new insights into the regulation of PTMCs in mammals.


Asunto(s)
Semen , Testículo , Animales , Masculino , Ratones , Lipasa/genética , Mamíferos , Espermatogénesis/genética , Espermatogonias , Testículo/metabolismo
13.
Proteomics ; 23(12): e2300107, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050850

RESUMEN

Cattle-yak, the interspecific hybrid between yak and taurine cattle, exhibits male-specific sterility. Massive loss of spermatogenic cells, especially spermatocytes, results in azoospermia in these animals. Currently, the mechanisms underlying meiosis block and defects in spermatocyte development remain elusive. The present study was designed to investigate the differences in the protein composition of spermatocytes isolated from 12-month-old yak and cattle-yak testes. Histological analysis confirmed that spermatocytes were the most advanced germ cells in the testes of yak and cattle-yak at this developmental stage. Comparative proteomic analysis identified a total of 452 differentially abundant proteins (DAPs) in the fluorescence-activated cell sorting (FACS) isolated spermatocytes from cattle-yak and yak. A total of 291 proteins were only present in yak spermatocytes. Gene Ontology analysis revealed that the downregulated DAPs were mostly enriched in the cellular response to DNA damage stimulus and double-strand breaks (DSBs) repair via break-induced replication, while the proteins specific for yak were related to cell division and cycle, spermatogenesis, and negative regulation of the extrinsic apoptotic signaling pathway. Ultimately, these DAPs were related to the critical process for spermatocyte meiotic events, including DSBs, homologous recombination, synapsis, crossover formation, and germ cell apoptosis. The database composed of proteins associated with spermatogenesis, including KPNA2, HTATSF1, TRIP12, STIP1, LZTFL1, LARP7, MTCH2, STK31, ROMO1, CDK5AP2, DNMT1, RBM44, and CHRAC1, is the focus of further research on male hybrid sterility. In total, these results provide insight into the molecular mechanisms underlying failed meiotic processes and male infertility in cattle-yak.


Asunto(s)
Infertilidad Masculina , Proteómica , Animales , Humanos , Bovinos , Masculino , Testículo/metabolismo , Espermatogénesis/genética , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , Infertilidad Masculina/patología , Espermatocitos/metabolismo , Proteínas de Unión al ADN/genética , Nucleoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
14.
Reprod Domest Anim ; 58(5): 679-687, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36880652

RESUMEN

Cattle-yak, the hybrid offspring of yak (Bos grunniens) and cattle (Bos taurus), serves as a unique model to dissect the molecular mechanisms underlying reproductive isolation. While female cattle-yaks are fertile, the males are completely sterile due to spermatogenic arrest at the meiosis stage and massive germ cell apoptosis. Interestingly, meiotic defects are partially rescued in the testes of backcrossed offspring. The genetic basis of meiotic defects in male cattle-yak remains unclear. Structure-specific endonuclease subunit (SLX4) participates in meiotic double-strand break (DSB) formation in mice, and its deletion results in defects in spermatogenesis. In the present study, we examined the expression patterns of SLX4 in the testes of yak, cattle-yak, and backcrossed offspring to investigate its potential roles in hybrid sterility. The results showed that the relative abundances of SLX4 mRNA and protein were significantly reduced in the testis of cattle-yak. The results of immunohistochemistry revealed that SLX4 was predominately expressed in spermatogonia and spermatocytes. Chromosome spreading experiments showed that SLX4 was significantly decreased in the pachytene spermatocytes of cattle-yak compared with yak and backcrossed offspring. These findings suggest that SLX4 expression was dysregulated in the testis of cattle-yak, potentially resulting in the failure of crossover formation and collapses of meiosis in hybrid males.


Asunto(s)
Enfermedades de los Bovinos , Infertilidad Masculina , Animales , Bovinos , Femenino , Masculino , Ratones , Enfermedades de los Bovinos/metabolismo , Infertilidad Masculina/veterinaria , Espermatocitos , Espermatogénesis/genética , Espermatogonias , Testículo/metabolismo , Recombinasas/metabolismo
15.
Theriogenology ; 203: 33-42, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36966583

RESUMEN

Cattle-yak, the hybrid offspring of yak and taurine cattle, exhibits male sterility with normal female fertility. Spermatogenesis is arrested in adult cattle-yak, and apoptosis is elevated in spermatogenic cells. Currently, the mechanisms underlying these defects remain elusive. Sertoli cells are the only somatic cells that directly interact with spermatogenic cells in the seminiferous tubules and play essential roles in spermatogenesis. The present study was designed to investigate gene expression signatures and potential roles of Sertoli cells in hybrid sterility in cattle-yak. Immunohistochemical analysis showed that the 5 mC and 5hmC signals in Sertoli cells of cattle-yaks were significantly different from those of age-matched yaks (P < 0.05). Transcriptome profiling of isolated Sertoli cells identified 402 differentially expressed genes (DEGs) between cattle-yaks and yaks. Notably, niche factor glial cell derived neurotrophic factor (GDNF) was upregulated, and genes involved in retinoic acid (RA) biogenesis were changed in Sertoli cells of cattle-yak, suggesting possible impairments of spermatogonial fate decisions. Further studies showed that the numbers of proliferative gonocytes and undifferentiated spermatogonia in cattle-yak were significantly higher than those in yak (P < 0.01). Exogenous GDNF significantly promoted the proliferation of UCHL1-positive spermatogonia in yaks. Therefore, we concluded that altered GDNF expression and RA signaling impacted the fate decisions of undifferentiated spermatogonia in cattle-yak. Together, these findings highlight the role of Sertoli cells and their derived factors in hybrid sterility.


Asunto(s)
Enfermedades de los Bovinos , Infertilidad Masculina , Femenino , Bovinos/genética , Masculino , Animales , Células de Sertoli/metabolismo , Testículo/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Espermatogénesis/genética , Espermatogonias/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , Infertilidad Masculina/metabolismo , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Enfermedades de los Bovinos/metabolismo
16.
Reprod Biol ; 23(1): 100727, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36603298

RESUMEN

Spermatogenesis is a continual process that relies on the activities of undifferentiated spermatogonia, which contain spermatogonial stem cells (SSCs) that serve as the basis of spermatogenesis. The gene expression pattern and molecular control of fate decisions of undifferentiated spermatogonia are not well understood. Rho guanine nucleotide exchange factor 15 (ARHGEF15, also known as EPHEXIN5) is a guanine nucleotide-exchange factor (GEF) that activates the Rho protein. Here, we reported that ARHGEF15 was expressed in undifferentiated spermatogonia and spermatocytes in mouse testes; however, its deletion did not affect spermatogenesis. Arhgef15-/- mice were fertile, and histological examination of the seminiferous tubules of Arhgef15-/- mice revealed complete spermatogenesis with the presence of all types of spermatogenic cells. Proliferation and differentiation of the undifferentiated spermatogonia were not impacted; however, further analysis showed that Arhgef15 deletion resulted in decreased expression of Nanos2, Lin28a and Ddx4. Together, these findings suggest that ARHGEF15 was specifically enriched in undifferentiated spermatogonia and regulated gene expression but dispensable for spermatogenesis in mice.


Asunto(s)
Espermatogonias , Testículo , Animales , Masculino , Ratones , Diferenciación Celular/fisiología , Proteínas de Unión al ARN/metabolismo , Túbulos Seminíferos , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Testículo/metabolismo
17.
Biology (Basel) ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552300

RESUMEN

Sertoli cells play indispensable roles in spermatogenesis by providing the advanced germ cells with structural, nutritional, and regulatory support. Lactate is regarded as an essential Sertoli-cell-derived energy metabolite that nurses various types of spermatogenic cells; however, this assumption has not been tested using genetic approaches. Here, we have reported that the depletion of lactate production in Sertoli cells by conditionally deleting lactate dehydrogenase A (Ldha) greatly affected spermatogenesis. Ldha deletion in Sertoli cells significantly reduced the lactate production and resulted in severe defects in spermatogenesis. Spermatogonia and spermatocytes did not show even mild impairments, but the spermiogenesis of Ldha conditional knockout males was severely disrupted. Further analysis revealed that 2456 metabolites were altered in the sperm of the knockout animals, and specifically, lipid metabolism was dysregulated, including choline, oleic acid, and myristic acid. Surprisingly, choline supplementation completely rescued the spermiogenesis disorder that was caused by the loss of Ldha activities. Collectively, these data have demonstrated that the interruption of Sertoli-cell-derived lactate impacted sperm development through a choline-mediated mechanism. The outcomes of these findings have revealed a novel function of lactate in spermatogenesis and have therapeutic applications in treating human infertility.

18.
Nat Commun ; 13(1): 4887, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068211

RESUMEN

Wild yak (Bos mutus) and domestic yak (Bos grunniens) are adapted to high altitude environment and have ecological, economic, and cultural significances on the Qinghai-Tibetan Plateau (QTP). Currently, the genetic and cellular bases underlying adaptations of yak to extreme conditions remains elusive. In the present study, we assembled two chromosome-level genomes, one each for wild yak and domestic yak, and screened structural variants (SVs) through the long-read data of yak and taurine cattle. The results revealed that 6733 genes contained high-FST SVs. 127 genes carrying special type of SVs were differentially expressed in lungs of the taurine cattle and yak. We then constructed the first single-cell gene expression atlas of yak and taurine cattle lung tissues and identified a yak-specific endothelial cell subtype. By integrating SVs and single-cell transcriptome data, we revealed that the endothelial cells expressed the highest proportion of marker genes carrying high-FST SVs in taurine cattle lungs. Furthermore, we identified pathways which were related to the medial thickness and formation of elastic fibers in yak lungs. These findings provide new insights into the high-altitude adaptation of yak and have important implications for understanding the physiological and pathological responses of large mammals and humans to hypoxia.


Asunto(s)
Células Endoteliales , Genoma , Aclimatación/genética , Animales , Bovinos , Humanos , Mamíferos/genética , ARN , Transcriptoma/genética
20.
Front Microbiol ; 13: 821613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733970

RESUMEN

For young ruminants, starter feeding can effectively facilitate the growth and development of rumen in ruminants, but the development of rumen is an important physiological challenge as it remains unclear for the mechanism of starter feeding stimulating. In this study, we performed an analysis of ruminal microbiota and their metabolites in yak calves to explore how the ruminal microbiota and their metabolites stimulate the ruminal function. This study associated 16S rRNA sequencing with liquid chromatography-mass spectrometry (LC-MS)-based metabolomics to evaluate the effects of starter feeding on ruminal microbiota diversity and metabolites in yak calves. We designed the experiment using 20 yak calves that were assigned equally into 2 groups, based on feeding milk replacer; the control (RA) group was fed with alfalfa hay while the treatment (RAS) group was fed with alfalfa hay and starter. After the experiment, we investigated the ruminal microbiota and metabolites through 16S rRNA sequencing and LC-MS-based metabolomics. During the preweaning period, the RAS group significantly promoted the growth performance and ruminal development in yak calves, including increases in body weight, chest girth, and development of rumen (P < 0.05). The RAS group increased the relative abundance of Bacteroidota, Proteobacteria, Chloroflexi, Synergistota, and Spirochaetota and decreased the abundance of Firmicutes, Desulfobacterota, Actinobacteriota, and Actinobacteriota at the phylum level (P < 0.05). At the genus level, the ruminal content of the RAS group was significantly enriched for Rikenellaceae_RC9_gut_group and Ruminococcus, while depleted for Prevotella, Christensenellaceae_R-7_group, and NK4A214_group (P < 0.05). A total of 37 metabolites were identified between the RA group and the RAS group, of which 15 metabolites were upregulated and 22 metabolites were downregulated compared with the RA group. Metabolic pathway analyses indicated that upregulated the metabolites of the RAS group yak calves were related to carbohydrate metabolism, ubiquinone, and other terpenoid-quinone biosynthesis, while the downregulated metabolic pathway was relevant to xenobiotic biodegradation, metabolism, and nucleotide metabolism. In summary, starter feeding before weaning significantly increased the dry matter intake and body weight of yak calves, changed the diversity and abundance of ruminal microbiota, and positively regulated the good development of ruminal morphology and function, providing an important basis for high-quality cultivation and the nutritional level of nutrition of yak calves in the Qinghai Tibet plateau. This study is based on the availability of 16S rRNA sequencing and LC-MS-based metabolomics in clarifying the function of starter feeding in the yak calves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA