Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 99
1.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38697247

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Climate , Environmental Monitoring , Esters , Organophosphates , Soil Pollutants , Soil , Tibet , Soil Pollutants/analysis , Soil/chemistry , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis
2.
Environ Sci Technol ; 58(19): 8490-8500, 2024 May 14.
Article En | MEDLINE | ID: mdl-38696308

Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air-surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models.


Carbon , Soil Pollutants , Soil , Soil/chemistry , Persistent Organic Pollutants , Environmental Monitoring , Arctic Regions , Ecosystem
3.
J Hazard Mater ; 472: 134512, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38733783

This study investigated the occurrence, stereoisomeric behavior, and potential sources of hexabromocyclododecanes (HBCDs) in topsoil and terrestrial vegetation from Svalbard and ocean sediment samples from Kongsfjorden, an open fjord on the west coast of Spitsbergen. The mean levels of total concentrations (Σ3HBCDs) were comparable to those in other remote regions and were lower than those in source regions. Elevated proportions of α-HBCD with an average of 41% in the terrestrial samples and 25% in ocean sediments compared to those in commercial products (10-13% for α-HBCD) were observed, implying isomerization from γ- to α-HBCD in the Arctic environment. In addition, the extensive deviations of enantiomeric fractions (EFs) from the racemic values reflected the effect of biotransformation on HBCD accumulation. Linear correlation analysis, redundancy analysis, and back-trajectory were combined to infer possible HBCD sources, and the results showed the important role of global production and long-range environmental transport (LRET) for the entry of HBCDs into the Arctic at an early stage. To the best of our knowledge, this study represents the first report on the diastereoisomer- and enantiomer-specific profiles of HBCDs in the Arctic terrestrial environment and sheds light on the transport pathways and environmental fate for more effective risk management related to HBCDs in remote regions.

4.
J Hazard Mater ; 470: 134223, 2024 May 15.
Article En | MEDLINE | ID: mdl-38593664

Elemental carbon (EC) and metals are two important parts of atmospheric black carbon (BC). However, little information is available regarding the interaction between them and its impacts on the reactive oxygen species (ROS) formation and physiological antioxidants depletion. In this study, we chose six most frequently detected metals (Cu(Ⅱ), Fe(Ⅲ), Mn(Ⅱ), Cr(Ⅲ), Pb(Ⅱ) and Zn(Ⅱ)) in BC and examined their interactions with EC in the ROS generation and glutathione (GSH) oxidation. Results showed that only Cu(Ⅱ) and EC synergically promoted the GSH oxidation and hydroxyl radical (•OH) generation. Other five metals had negligible effects on the GSH oxidation regardless of the presence or absence of EC. The synergistic interaction between Cu(Ⅱ) and EC could be attributed to the superior electrical conductivity of EC. In the process, EC transferred electrons from the adjacent GSH to Cu(Ⅱ) through its graphitic carbon framework to yield Cu(Ⅰ) and GSH radical. Cu(Ⅰ) further reacted with dioxygen to generate •OH, which eventually led to the oxidation of GSH. Our results revealed a new driving force inducing the ROS formation and GSH depletion as well as provided novel insights into the risk assessment of BC.

5.
Environ Sci Technol ; 58(15): 6804-6813, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38512799

The pervasive contamination of novel brominated flame retardants (NBFRs) in remote polar ecosystems has attracted great attention in recent research. However, understanding regarding the trophic transfer behavior of NBFRs in the Arctic and Antarctic marine food webs is limited. In this study, we examined the occurrence and trophodynamics of NBFRs in polar benthic marine sediment and food webs collected from areas around the Chinese Arctic Yellow River Station (n = 57) and Antarctic Great Wall Station (n = 94). ∑7NBFR concentrations were in the range of 1.27-7.47 ng/g lipid weight (lw) and 0.09-1.56 ng/g lw in the Arctic and Antarctic marine biota, respectively, among which decabromodiphenyl ethane (DBDPE) was the predominant compound in all sample types. The biota-sediment bioaccumulation factors (g total organic carbon/g lipid) of NBFRs in the Arctic (0.85-3.40) were 4-fold higher than those in the Antarctica (0.13-0.61). Trophic magnification factors (TMFs) and their 95% confidence interval (95% CI) of individual NBFRs ranged from 0.43 (95% CI: 0.32, 0.60) to 1.32 (0.92, 1.89) and from 0.34 (0.24, 0.49) to 0.92 (0.56, 1.51) in the Arctic and Antarctic marine food webs, respectively. The TMFs of most congeners were significantly lower than 1, indicating a trophic dilution potential. This is one of the very few investigations on the trophic transfer of NBFRs in remote Arctic and Antarctic marine ecosystems, which provides a basis for exploring the ecological risks of NBFRs in polar regions.


Flame Retardants , Antarctic Regions , Flame Retardants/analysis , Food Chain , Ecosystem , Bioaccumulation , Arctic Regions , Environmental Monitoring , Lipids , Halogenated Diphenyl Ethers/analysis
6.
J Hazard Mater ; 469: 133943, 2024 May 05.
Article En | MEDLINE | ID: mdl-38452676

Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria.


Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Soil , Bacteria/genetics , Ampicillin
7.
Talanta ; 272: 125802, 2024 May 15.
Article En | MEDLINE | ID: mdl-38368834

A growing evidence showed that the terrestrial ecosystem was a greater sink for microplastics (MPs) compared with ocean. Owing to the limitation of pretreatment methods, there are few reports on the identification of small-sized MPs(<60 µm) in soil currently, which may led to an underestimation of the environmental risk of MPs in soil system. In this study, we established an efficient pretreatment method for MPs in soils by developing a novel device, Plastic Flotation and Separator system (PFSS). The device integrated the suspension, digestion and filtration procedures into one system, reducing the losses of pretreatment process. It was shown that the recovery of MPs with size of 45 µm was 90%, significantly surpassing that of the traditional pretreatment methods in this particle size range. Combined with the SEM-Raman technique, MPs with small size were accurately determined. This work provides an effective method for the extraction and determination of MPs in soils and is of significance for the risk assessment of MPs in soil system.

8.
J Hazard Mater ; 465: 133044, 2024 03 05.
Article En | MEDLINE | ID: mdl-38000280

Although the Himalayas act as a natural barrier, studies have demonstrated that certain traditional persistent organic pollutants (POPs) can be transported into the Tibetan Plateau (TP) through the mountain valleys. Herein, we selected five mountain valleys in the Himalayas to investigate novel flame retardants (NFRs), as representative novel POPs, their concentration, distribution, transport behavior, potential sources and ecological risk. The results revealed that total concentrations of 7 novel brominated flame retardants (NBFRs) ranged from 4.89 to 2853 pg/g dry weight (dw) in soil and from not detected (ND) to 4232 pg/g dw in moss. Additionally, total concentrations of 10 organophosphate esters (OPEs) ranged from ND to 84798 pg/g dw in soil. Among the NFRs, decabromodiphenylethane (DBDPE) and tri-phenyl phosphate (TPhP) were the predominant compounds. NBFRs and OPEs concentrations were slightly higher than those in the polar regions. The correlation between different compounds and altitude varies in different areas, indicating that the NFRs distribution in the mountain valleys result from a combination of long-range transport and local sources. The ecological risk assessment using risk quotient (RQs) revealed that TPhP and tris (2-chloroisopropyl) phosphate (TCIPP) exhibited medium or high risks at some sites. This study sheds light on the transport pathways and environmental behaviors of the NFRs in the valleys and highlights the need for increased attention to the ecological risks posed by OPEs in the TP.


Flame Retardants , Soil , Flame Retardants/analysis , Environmental Monitoring/methods , Himalayas , Organophosphates , Phosphates , China , Esters
9.
Sci Total Environ ; 912: 169394, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38135091

Although the fate of PAHs in the three polar regions (Antarctic, Arctic, and Tibetan Plateau) has been investigated, the occurrence and contamination profiles of PAH derivatives such as oxygenated PAHs (OPAHs) and nitrated PAHs (NPAHs) remain unclear. Some of them are more toxic and can be transformed from PAHs in environment. This study explored and compared the concentrations composition profiles and potential sources of PAHs, OPAHs, and NPAHs in soil and vegetation samples from the three polar regions. The total PAH, OPAH, and NPAH concentrations were 3.55-519, n.d.-101, and n.d.-1.10 ng/g dry weight (dw), respectively. The compounds were dominated by three-ring PAHs, and the most abundant individual PAH and OPAH were phenanthrene (PHE) and 9-fluorenone (9-FO), respectively. The sources of PAHs and their derivatives were qualitatively analyzed by the diagnostic ratios and quantified using the positive matrix factorization (PMF) model. The ratios of PAH derivatives to parent PAHs (9-FO/fluorene and 9,10-anthraquinone/anthracene) were significantly higher in the Antarctic samples than in the Arctic and TP samples, implying a higher occurrence of secondary OPAH and NPAH formation in the Antarctic region. To our knowledge, this is the first comparative study that simultaneously investigated the contamination profiles of PAHs and their derivatives in the three polar regions. The findings of this study provide a scientific basis for the development of risk assessment and pollution control strategies in these fragile regions.


Air Pollutants , Polycyclic Aromatic Hydrocarbons , Soil , Antarctic Regions , Nitrates , Tibet , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollutants/analysis , China
10.
Sci Total Environ ; 913: 169655, 2024 Feb 25.
Article En | MEDLINE | ID: mdl-38159767

Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (HPAHs) can be unintentionally formed and released during industrial thermal processes. However, information on internal exposure and health risks of PAHs and HPAHs for thermal industry workers is very limited. In this study, serum samples from 220 aluminum smelter workers in East China were analyzed, and the relationship between the levels of these pollutants and various health indicators was also assessed. The workers had markedly higher serum concentrations of PAHs and HPAHs than the controls. The serum concentrations of ∑13PAHs and ∑9HPAHs increased with increasing age and occupational exposure duration in male workers. A positive correlation was observed between the ∑13PAH and ∑9HPAH serum concentrations, and the concentration of ∑13PAHs was approximately 50 times higher than that of ∑9HPAHs. For benzo[a]pyrene equivalent (BaPeq)-based risk assessment, the contribution of PAHs and HPAHs to the risk was 80 % and 20 % in the workers. PAHs and HPAHs showed a positive association with pulmonary hypofunction, hypertension and abnormal electrocardiogram. This study indicates occupational exposure to these toxic pollutants remains a significant issue and provides evidence that elevated serum levels of ∑13PAHs and ∑9HPAHs may be associated with an increased risk of lung and cardiovascular diseases.


Environmental Pollutants , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Male , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Aluminum , Occupational Exposure/analysis , China
11.
J Hazard Mater ; 463: 132824, 2024 02 05.
Article En | MEDLINE | ID: mdl-37890383

The knowledge of polychlorinated naphthalenes (PCNs) in the Antarctic atmosphere is quite limited compared to the Arctic. PCNs are a global concern because of their PBT characteristics (i.e., persistent, bioaccumulative, and toxic) and severe and often deadly biological effects on people and other animals. Therefore, the present study used a passive air sampling method to conduct long-term air monitoring of PCNs for almost a decade from 2013 to 2022, specifically on Fildes Peninsula, situated on King George Island, located in West Antarctica. The median sum of mono-CNs to octa-CN concentration (∑75PCNs) in the Antarctic atmosphere was 12.4 pg/m3. In terms of homologues, mono-CNs to tri-CNs predominated. Among these, the prevalent congeners observed were PCN-1 and PCN-2, originating from mono-CNs, followed by PCN-5/7 from di-CNs, and PCN-24/14 from tri-CNs, respectively. Between 2013 and 2022, the total levels of PCNs were found to have decreased approximately fourfold. Ratio analyses and principal component analysis (PCA) showed that the long-range atmospheric transport and combustion-related sources as the potential PCN sources in the study area. This paper provides the most up-to-date temporal trend analysis of PCNs in the Antarctic continent and is the first to document all 75 congeners (mono-CNs to octa-CN homologue groups).


Air Pollutants , Humans , Air Pollutants/analysis , Environmental Monitoring , Antarctic Regions , Naphthalenes
12.
13.
Environ Sci Technol ; 57(44): 17076-17086, 2023 11 07.
Article En | MEDLINE | ID: mdl-37839075

Information about the occurrence and trophic transfer of polychlorinated naphthalenes (PCNs) in polar ecosystems is vital but scarce. In this study, PCNs were analyzed in benthic marine sediment and several biological species, collected around the Chinese polar scientific research stations in Svalbard in the Arctic and South Shetland Island in Antarctica. Total PCNs in biota ranged from 28 to 249 pg/g of lipid weight (lw) and from 11 to 284 pg/g lw in the Arctic and Antarctic regions, respectively. The concentrations and toxic equivalent (TEQ) of PCNs in polar marine matrices remained relatively low, and the compositions were dominated by lower chlorinated homologues (mono- to trichlorinated naphthalenes). Trophic magnification factors (TMFs) were calculated for congeners, homologues, and total PCNs in the polar benthic marine food webs. Opposite PCN transfer patterns were observed in the Arctic and Antarctic regions, i.e., trophic dilution and trophic magnification, respectively. This is the first comprehensive study of PCN trophic transfer behaviors in remote Arctic and Antarctic marine regions, providing support for further investigations of the biological trophodynamics and ecological risks of PCNs.


Food Chain , Naphthalenes , Antarctic Regions , Ecosystem , Geologic Sediments , Environmental Monitoring
14.
Environ Pollut ; 331(Pt 2): 121942, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37263568

Benzotriazole ultraviolet stabilizers (BZT-UVs), substituted diphenylamine antioxidants (S-DPAs), and synthetic phenolic antioxidants (SPAs) are three types of synthetic additive pollutants that are received increasing attention in the recent decade. In this study, a total of twenty-seven target analytes were measured in sediment cores and surface sediments collected from a lake with long sedimentary history. All target analytes were detected in the sediment samples, and mean values of the total ∑BZT-UVs, ∑S-DPAs and ∑SPAs concentrations were 220 ± 552 ng/g dry weight (d.w.), 20.8 ± 27.9 ng/g d. w., and 95.8 ± 146 ng/g d. w., respectively. Based on the dating results of two sediment cores, the total concentrations of BZT-UVs, S-DPA, and SPAs showed a fluctuating but overall increasing trend over time, which intuitively reflects the change of historical emissions. Meanwhile, fecal and sewage markers (i.e., sterols and pharmaceuticals, respectively) were jointly used to trace the probable sources of these pollutants. Results from the correlation and clustering analyses suggest that unregular fecal discharges and point-source domestic sewage need to be considered if pollution in the investigated area is to be controlled. To our knowledge, this study is the initial attempt to reveal the temporal variations of these synthetic additive pollutants in an aquatic environment in China and to demonstrate the feasibility of using markers to trace the sources of emerging pollutant analogues.


Environmental Pollutants , Water Pollutants, Chemical , Sewage/analysis , Antioxidants/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Lakes/analysis , Water Pollutants, Chemical/analysis , Phenols/analysis , Diphenylamine , China , Geologic Sediments
15.
J Environ Sci (China) ; 131: 59-67, 2023 Sep.
Article En | MEDLINE | ID: mdl-37225381

Polyhalogenated carbazoles (PHCZs) are recently raising much attention due to their toxicity and ubiquitous environmental distribution. However, little knowledge is known about their ambient occurrences and the potential source. In this study, we developed an analytical method based on GC-MS/MS to simultaneously determine 11 PHCZs in PM2.5 from urban Beijing, China. The optimized method provided low method limit of quantifications (MLOQs, 1.45-7.39 fg/m3) and satisfied recoveries (73.4%-109.5%). This method was applied to analyze the PHCZs in the outdoor PM2.5 (n = 46) and fly ash (n = 6) collected from 3 kinds of surrounding incinerator plants (steel plant, medical waste incinerator and domestic waste incinerator). The levels of ∑11PHCZs in PM2.5 ranged from 0.117 to 5.54 pg/m3 (median 1.18 pg/m3). 3-chloro-9H-carbazole (3-CCZ), 3-bromo-9H-carbazole (3-BCZ), and 3,6-dichloro-9H-carbazole (36-CCZ) were the dominant compounds, accounting for 93%. 3-CCZ and 3-BCZ were significantly higher in winter due to the high PM2.5 concentration, while 36-CCZ was higher in spring, which may be related to the resuspending of surface soil. Furthermore, the levels of ∑11PHCZs in fly ash ranged from 338 to 6101 pg/g. 3-CCZ, 3-BCZ and 36-CCZ accounted for 86.0%. The congener profiles of PHCZs between fly ash and PM2.5 were highly similar, indicating that combustion process could be an important source of ambient PHCZs. To the best of our knowledge, this is the first research providing the occurrences of PHCZs in outdoor PM2.5.


Coal Ash , Tandem Mass Spectrometry , Beijing , China , Carbazoles
16.
Sci Total Environ ; 874: 162477, 2023 May 20.
Article En | MEDLINE | ID: mdl-36858241

Guideline levels of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in feed and food have been separately recommended for the official food safety control around the world. However, less is considered about the transfer effect of PCDD/Fs from feed to food, and consequently possible human exposure risk. In this study, different controlled feeding experiments (E1 group: 4.92 pg TEQ/g in feed, E2 group: 0.61 pg TEQ/g in feed) were conducted on dairy cow (Chinese Holstein breed) to evaluate kinetics of PCDD/Fs from feed to milk and blood. Even though the PCDD/F level in feed in E2 was satisfied with the EU Regulation (No 277/2012), the TEQ levels in milk and tissues exceeded the European Union maximum level (EU ML) after approximately one-week exposure. The dynamic variation in milk during the initial 20-day exposure was successfully described by a first-order kinetic model. The levels at the plateau period showed a significant linear relationship (p < 0.01, R2 = 0.98) against the intake amounts from feed. Based on modeling, a maximum content was obtained at approximately 0.33 pg TEQ/g in cow feed with 12 % moisture to ensure the milk and meat safety under the current regulatory requirements of EU for cow-origin food. After the cease of exposure, the PCDD/F levels in milk declined below the EU ML within 40 days, while those in meat were still higher than the EU ML over 160 days. In serum, PCDD/Fs detected in E1 showed a similar dynamic variation during the exposure period. Regarding congener profile, higher-chlorinated congeners tended to transfer from feed to feces, whereas lower ones were preferably transferred into milk, which required specific concern about the metabolic effect of PCDD/Fs in large mammals. This study revealed a necessity for re-evaluation of official regulation on pollutants in cow feed and cow-origin food in terms of biotransfer and bioaccumulation.


Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Cattle , Animals , Female , Humans , Milk/chemistry , Polychlorinated Dibenzodioxins/analysis , Dibenzofurans/analysis , Dibenzofurans, Polychlorinated , Food Safety , Food Contamination/analysis , Dioxins/analysis , Mammals
17.
Sci Total Environ ; 878: 163023, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-36990243

Polychlorinated naphthalenes (PCNs) are ubiquitous atmospheric pollutants that can even be found in the most remote region of the Arctic. However, temporal trend analysis and reports on mono- to octa-CN in the Arctic air are still scarce. In the present study, 8 years of atmospheric monitoring data of PCNs on Svalbard was investigated using XAD-2 resin passive air samplers (PASs) from 2011-2019. The concentrations of ∑75 PCNs in the Arctic air ranged from 4.56 to 85.2 pg/m3, with a mean of 23.5 pg/m3. The mono-CNs and di-CNs were the dominant homologue groups accounting for 80 % of the total concentrations. The most abundant congeners were PCN-1, PCN-2, PCN-24/14, PCN-5/7, and PCN-3, respectively. A declining time trend of PCN concentration was observed from 2013 to 2019. The reduction in PCN concentrations is likely due to declining global emissions and banned production. However, no significant spatial difference was observed among the sampling sites. The total PCN toxic equivalency (TEQ) concentrations in the Arctic atmosphere ranged from 0.043 to 1.93 fg TEQ/m3 (mean 0.41 fg TEQ/m3). The fraction of combustion-related congeners to ∑PCNs (tri- to octa-CN) analysis results indicated that the sources of PCNs in the Arctic air were contributed mainly from reemissions of historical Halowax mixtures and combustion-related sources. To the best of our knowledge, this is the first research to report all 75 PCN congeners and homologue groups in Arctic air. Therefore, this study provides data on recent temporal trend analysis as well as all the 75 PCN congeners in the Arctic atmosphere.

18.
J Hazard Mater ; 448: 130907, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36764260

Occurrence of persistent organic pollutants (POPs) in the Polar Regions has received great concern in the past several decades due to their long-term adverse effect on biological health in such a fragile environment. However, there is still argument over their source and fate in these pristine areas. Here we attempted to use a novel approach (compound-specific isotope analysis of chlorine, CSIA-Cl) to identify the source of POPs in Antarctic air by comparison with the source area. The results showed that the relative isotope-ratio variation of Cl (δ37Cl') values showed a large variation from - 137 to 9.04 ‰ in the gas-phase samples, and a significantly negative correlation (p < 0.01) was obtained against the logKoa values of PCBs. There were no significant correlations (p > 0.05) observed between the δ37Cl' values and meteorological parameters except for PCB-28 which showed temperature dependence. By contrast, the δ37Cl' values in the urban (Beijing) air ranged from - 12.8 to 2.03 ‰. The larger variation of δ37Cl' in Antarctic air indicated evidently influence of long-range atmospheric transport (LRAT) on isotopologue fractionation of PCBs. This study may shed light on the application of CSIA-Cl for source identification of chlorinated POPs on a large scale.

19.
Environ Pollut ; 320: 121066, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36639047

The booming demands for energy and the drive towards low-carbon energy sources have prompted a worldwide emerging constructions of photovoltaic (PV) solar energy facilities. Compared with fossil-based electrical power system, PV solar energy has significantly lower pollutants and greenhouse gases (GHG) emissions. However, PV solar technology are not free of adverse environmental consequences such as biodiversity and habitat loss, climatic effects, resource consumption, and disposal of massive end-of-life PV panels. This review highlights the benefits and potential environmental impacts of implementing PV technologies. To the end, some proposals are recommended to improve this new technology's sustainability.


Greenhouse Gases , Solar Energy , Environment , Energy-Generating Resources , Technology
20.
Sci Total Environ ; 862: 160938, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36526168

Contaminants in high-altitude mountains such as the Tibetan Plateau (TP) have attracted extensive attention due to their potential impact on fragile ecosystems. Rapid development of the economy and society has promoted pollution caused by local traffic emissions in the TP. Among the pollutants emitted by traffic, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) are of particular concern due to their high toxicity. The TP provides an environment to explore the degree and range of contribution for traffic-induced PAHs and OPAHs. In this study, soils and moss were collected at different altitudes and distances from the G318 highway in the southeast TP. The total concentrations of PAHs (∑16PAHs) and OPAHs (∑6OPAHs) in soils were in the range of 3.29-119 ng/g dry weight (dw) and 0.54-9.65 ng/g dw, respectively. ∑16PAH and ∑6OPAH concentrations decreased logarithmically with increasing distance from traffic. A significantly positive correlation between ∑16PAHs and altitude was found at sampling points closest to traffic. Dominant PAHs constituents in soil and moss included chrysene (CHR), benzo[g,h,i]perylene (BghiP), and benzo[b]fluoranthene (BbF); prevalent OPAH compounds were 9-fluorenone (9-FO) and 9,10-anthraquinone (ATQ). These compounds were related to characteristics of traffic emissions. The multiple diagnosis ratio and correlation analysis showed that exhaust emissions were the main source of the PAHs and OPAHs in the studied environment. PMF modeling quantification of the relative contribution of traffic emissions to PAHs in roadside soils was 45 % on average. The present study characterized the extent and range of traffic-induced PAH and OPAH emissions, providing valuable information for understanding the environmental behaviors and potential risks of traffic-related contaminants in high-altitude areas.


Bryophyta , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Tibet , Environmental Monitoring , Soil , Ecosystem , Soil Pollutants/analysis
...