Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Environ Pollut ; 361: 124898, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241953

RESUMEN

Widespread contamination of soils by neurotoxic lead ions (Pb) posed a serious risk to food security, but efficient treatment in soil remained a challenge. For the adsorption of Pb, DFT calculations were firstly performed to predict the synergistic effect of sulfhydryl-hydroxyl groups as well as the ability of sulfur ions to strengthen Pb-OH bonding. Consequently, Mn-S functionalized coffee ground biochar (MSBC) was then synthesized utilizing precipitation and impregnation methods. In the soil experiment, the removal efficiency of Pb reached 82.92%, exceeding the previous research results. In addition, it successfully restored the polluted farmland near the mining area and increased the plant height of Swiss chard by 186.23%. Subsequently, synergistic effect of sulfhydryl-hydroxyl groups was confirmed by XPS, FT-IR, and DFT calculations. Furthermore, the factors affecting the structural stability of O-Pb-S were discussed by regression analysis. These reflected that MSBC can enhance the removal efficiency of Pb in soil by mitigating the competition of impurity ions to adsorption sites. These findings may provide new insights into the development of the specific passivation materials for other heavy metals.

2.
PLoS One ; 19(8): e0308360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106230

RESUMEN

Increasing evidence has shown that gut microbiota (GM) was involved in the pathophysiology of musculoskeletal disorders through multiple pathways such as protein anabolism, chronic inflammation and immunity, and imbalanced metabolism. We performed a systematic review and meta-analysis of human studies to evaluate GM diversity differences between individuals with and without sarcopenia, and explore bacteria with potential to become biomarkers. PubMed, Embase and Cochrane library were systematically searched from inception to February 16, 2024. Studies were included if they (1) sampled adults with sarcopenia, and (2) performed GM analysis and reported α-diversity, ß-diversity or relative abundance. The methodological quality of included studies and the certainty of evidence were assessed through the Joanna Briggs Institute critical appraisal checklist for analytical cross-sectional studies and the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) Working Group system, respectively. Weighted standardized mean differences (SMDs) and corresponding 95% confidence intervals (CIs) were estimated for α-diversity indices using a fixed-effects and a random-effects model. Beta diversity and the relative abundance of GM were summarized qualitatively. A total of 19 studies involving 6,565 participants were included in this study. Compared with controls, significantly moderate decrease in microbial richness in participants with sarcopenia were found (Chao1: SMD = -0.44; 95%CI, -0.64 to -0.23, I2 = 57.23%, 13 studies; observed species: SMD = -0.68; 95%CI, -1.00 to -0.37, I2 = 66.07%, 5 studies; ACE index: SMD = -0.30; 95%CI, -0.56 to -0.04, I2 = 8.12%, 4 studies), with very low certainty of evidence. Differences in ß-diversity were consistently observed in 84.6% of studies and 97.3% of participants. The detailed analysis of the gut microbial differential abundance identified a loss of Prevotellaceae, Prevotella, and Megamonas in sarcopenia compared with non-sarcopenia. In conclusion, sarcopenia was found to be associated with reduced richness of GM, and supplementing intestinal bacteria described above may contribute to preventing and treating this muscle disease. The research protocol was registered and approved in PROSPERO (CRD42023412849).


Asunto(s)
Microbioma Gastrointestinal , Sarcopenia , Sarcopenia/microbiología , Humanos , Bacterias/clasificación
3.
BMC Plant Biol ; 24(1): 780, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148012

RESUMEN

BACKGROUND: The symbiosis among plants, rhizobia, and arbuscular mycorrhizal fungi (AMF) is one of the most well-known symbiotic relationships in nature. However, it is still unclear how bilateral/tripartite symbiosis works under resource-limited conditions and the diverse genetic backgrounds of the host. RESULTS: Using a full factorial design, we manipulated mungbean accessions/subspecies, rhizobia, and AMF to test their effects on each other. Rhizobia functions as a typical facilitator by increasing plant nitrogen content, plant weight, chlorophyll content, and AMF colonization. In contrast, AMF resulted in a tradeoff in plants (reducing biomass for phosphorus acquisition) and behaved as a competitor in reducing rhizobia fitness (nodule weight). Plant genotype did not have a significant effect on AMF fitness, but different mungbean accessions had distinct rhizobia affinities. In contrast to previous studies, the positive relationship between plant and rhizobia fitness was attenuated in the presence of AMF, with wild mungbean being more responsive to the beneficial effect of rhizobia and attenuation by AMF. CONCLUSIONS: We showed that this complex tripartite relationship does not unconditionally benefit all parties. Moreover, rhizobia species and host genetic background affect the symbiotic relationship significantly. This study provides a new opportunity to re-evaluate the relationships between legume plants and their symbiotic partners.


Asunto(s)
Micorrizas , Rhizobium , Simbiosis , Vigna , Micorrizas/fisiología , Vigna/microbiología , Vigna/genética , Vigna/fisiología , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/fisiología
4.
Int J Biol Macromol ; 278(Pt 3): 134700, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142492

RESUMEN

In this study, amino-modified graphene oxide(NGO) was prepared by introducing amino functional groups. Based on the cross-linking between Ca(II) and sodium alginate (SA), associated with dense slit-like pore resulted from the nano-sheet accumulation of NGO and montmorillonite (MMT), composite aerogels (NGM) with stable pore structure were constructed, thus it realized the selective recovery of hydrated copper ions in complex wastewater systems. Raman analysis and density functional theory calculation confirmed the construction of amino-modified defect GO and significantly improved its chemical reactivity, which laid the foundation for the construction of slit pore structure of NGM (SEM can confirm). At the same time, it proposed that the good selective adsorption of Cu(II) on NGM was related to the synergism of strong electrostatic force, ion exchange and complexation based on the characterizations of FT-IR and XPS. In order to realize the value-added utilization of NGM aerogel (NGMC) after adsorbing Cu(II), NGMC was used as a catalyst to degrade organic pollutants in wastewater. Systematic experiments shown that NGMC can degrade organic pollutants with a degradation efficiency >80 %. In summary, NGM had a broad application prospect for selective recovery of Cu(II) from complex wastewater systems without second pollution.


Asunto(s)
Alginatos , Cobre , Geles , Grafito , Contaminantes Químicos del Agua , Cobre/química , Alginatos/química , Adsorción , Geles/química , Grafito/química , Contaminantes Químicos del Agua/química , Catálisis , Purificación del Agua/métodos , Aguas Residuales/química
5.
Plant Physiol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028839

RESUMEN

The involvement of nuclear factor Y (NF-Y) in transcriptional reprogramming during arbuscular mycorrhizal symbiosis has been demonstrated in several plant species. However, a comprehensive picture is lacking. We showed that the spatial expression of NF-YC3 was observed in cortical cells containing arbuscules via the cis-regulatory element GCC boxes. Moreover, the NF-YC3 promoter was transactivated by the combination of CYCLOPS and autoactive calcium and calmodulin-dependent kinase (CCaMK) via GCC boxes. Knockdown of NF-YC3 significantly reduced the abundance of all intraradical fungal structures and affected arbuscule size. BCP1, SbtM1, and WRI5a, whose expression associated with NF-YC3 levels, might be downstream of NF-YC3. NF-YC3 interacted with NF-YB3a, NF-YB5c, or NF-YB3b, in yeast (Saccharomyces cerevisiae) and in planta, and interacted with NF-YA3a in yeast. Spatial expression of three NF-YBs was observed in all cell layers of roots under both mock and mycorrhizal conditions. Simultaneous knockdown of three NF-YBs, but not individually, reduced the fungal colonization level, suggesting that there might be functional redundancy of NF-YBs to regulate AM symbiosis. Collectively, our data suggest that NF-YC3 and NF-YBs positively regulate AM symbiosis in tomato, and arbuscule-related NF-YC3 may be an important downstream gene of the common symbiosis signaling pathway.

6.
Braz J Med Biol Res ; 57: e13357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38958364

RESUMEN

The overexpression of P-glycoprotein (P-gp/ABCB1) is a leading cause of multidrug resistance (MDR). Hence, it is crucial to discover effective pharmaceuticals that counteract ABCB1-mediated multidrug resistance. FRAX486 is a p21-activated kinase (PAK) inhibitor. The objective of this study was to investigate whether FRAX486 can reverse ABCB1-mediated multidrug resistance, while also exploring its mechanism of action. The CCK8 assay demonstrated that FRAX486 significantly reversed ABCB1-mediated multidrug resistance. Furthermore, western blotting and immunofluorescence experiments revealed that FRAX486 had no impact on expression level and intracellular localization of ABCB1. Notably, FRAX486 was found to enhance intracellular drug accumulation and reduce efflux, resulting in the reversal of multidrug resistance. Docking analysis also indicated a strong affinity between FRAX486 and ABCB1. This study highlights the ability of FRAX486 to reverse ABCB1-mediated multidrug resistance and provides valuable insights for its clinical application.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Neoplasias de la Mama , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Femenino , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/metabolismo , Línea Celular Tumoral , Western Blotting
7.
J Colloid Interface Sci ; 677(Pt A): 108-119, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39083888

RESUMEN

MnSO4-modified biochar (Mn-BC) was synthesized to remove berberine hydrochloride (BH) from wastewater by utilizing tea waste as raw material and MnSO4 as modifier. Brunel Emmett Taylor (BET) analysis reveals that the specific surface area (SSA) and average pore size (Dave) of Mn-BC are 1.4 and 7 times higher than those of pristine biochar apart, attributing to the dissociation effect can promote the dispersion of MnSO4 in the pores of the biochar. Meanwhile, the doping of Mn not only introduces additional oxygen-containing functional groups (OCFGs), but also modulates the π electron density. Furthermore, Response surface method (RSM) analysis reveals that Mn-BC dosage has the most significant effect on BH removal, followed by BH concentration and pH value. Kinetic and isothermal studies reveal that the BH adsorption process of Mn-BC was mainly dominated by chemical and monolayer adsorption. Meanwhile, density functional theory (DFT) calculations confirm the contribution of Mn doping to the conjugation effect in the adsorption system. Originally proposed Mn-BC is one potentially propitious material to eliminate BH from wastewater, meanwhile this also provides a newfangled conception over the sustainable utilization of tea waste resources.

8.
Annu Rev Microbiol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781605

RESUMEN

Fungal infections continue to represent a major threat to public health, particularly with the emergence of multidrug-resistant fungal pathogens. As part of the innate immune response, the host modulates the availability of metals as armament against pathogenic microbes, including fungi. The transition metals Fe, Cu, Zn, and Mn are essential micronutrients for all life forms, but when present in excess, these same metals are potent toxins. The host exploits the double-edged sword of these metals, and will either withhold metal micronutrients from pathogenic fungi or attack them with toxic doses. In response to these attacks, fungal pathogens cleverly adapt by modulating metal transport, metal storage, and usage of metals as cofactors for enzymes. Here we review the current state of understanding on Fe, Cu, Zn, and Mn at the host-fungal pathogen battleground and provide perspectives for future research, including a hope for new antifungals based on metals.

9.
Int J Biol Macromol ; 267(Pt 2): 131484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599421

RESUMEN

Adopting effective and efficient techniques for the treatment of heavy metal pollution in water bodies plays an important role in guaranteeing the quality of water and the sustainable development of water resources. In this study, GO, MMT and SA were used as raw materials to compare the adsorption behaviors of three alginate-based adsorbents crosslinked with different valence metal ions (Ca2+, Fe3+ and Zr4+) on Cu(II). The aerogels were based on sodium alginate as the matrix material with unique slit-shaped pore structures formed by stacking effect of sheets and chemical bonding. It was found that the pore structures of the aerogels were denser and more orderly with the increase of the valence states of the crosslinked ions, and the affinity for Cu(II) in planar configuration was stronger. The Zr4+-GMSA aerogel had the maximum adsorption capacity of 126.68 mg/g and the Kd of Cu(II) was up to 50.80 L/g, which exhibited good preferential adsorption performance. The adsorption mechanism of Mn+-GMSA aerogels on Cu(II) was mainly ionic exchange, surface complexation and physical adsorption, which was explored by combining XPS and EDS characterizations of Mn+-GMSA before and after adsorption. This scheme can provide valuable and meaningful contribution to realize the selective recovery of Cu(II).


Asunto(s)
Alginatos , Cobre , Contaminantes Químicos del Agua , Purificación del Agua , Cobre/química , Adsorción , Alginatos/química , Porosidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Iones/química , Cinética , Geles/química , Concentración de Iones de Hidrógeno
10.
J Environ Manage ; 356: 120599, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508013

RESUMEN

The aim of this paper is to investigate the derived structure and properties of Zeolitic Imidazolate Framework-8 (ZIF-8), and the effect of residual structural on the catalytic properties after loading with Titanium Dioxide (TiO2). For this purpose, we ingeniously prepare C-ZIF-8@TiO2 with a transition-state defect structure and apply it for efficiently degrading organic dye wastewater represented by Rhodamine B (Rh-B). Thanks to the transition-state defect structure loaded with TiO2 and ZIF-8 self-derived Carbon (C) and Zinc Oxide (ZnO), the catalytic performance of C-ZIF-8@TiO2 is superior to that of TiO2 and normal TiO2/ZIF-8 composites, and it is effective in degrading a variety of antibiotics and dyes. The related characterization also shows good photovoltaic properties and long-term durability for C-ZIF-8@TiO2. The mechanism on free radical action is elucidated and the possible degradation pathway for Rh-B is speculated. Therefore, C-ZIF-8@TiO2 provides a new strategy for the degradation of organic pollutants in water bodies.


Asunto(s)
Contaminantes Ambientales , Fotólisis , Porosidad , Aguas Residuales , Catálisis
11.
Braz. j. med. biol. res ; 57: e13357, fev.2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564167

RESUMEN

The overexpression of P-glycoprotein (P-gp/ABCB1) is a leading cause of multidrug resistance (MDR). Hence, it is crucial to discover effective pharmaceuticals that counteract ABCB1-mediated multidrug resistance. FRAX486 is a p21-activated kinase (PAK) inhibitor. The objective of this study was to investigate whether FRAX486 can reverse ABCB1-mediated multidrug resistance, while also exploring its mechanism of action. The CCK8 assay demonstrated that FRAX486 significantly reversed ABCB1-mediated multidrug resistance. Furthermore, western blotting and immunofluorescence experiments revealed that FRAX486 had no impact on expression level and intracellular localization of ABCB1. Notably, FRAX486 was found to enhance intracellular drug accumulation and reduce efflux, resulting in the reversal of multidrug resistance. Docking analysis also indicated a strong affinity between FRAX486 and ABCB1. This study highlights the ability of FRAX486 to reverse ABCB1-mediated multidrug resistance and provides valuable insights for its clinical application.

12.
Environ Res ; 247: 118147, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220076

RESUMEN

In order to reduce the mineralization of soil organic carbon (SOC) and enhance the ability of soil carbon sequestration. Mn-modified waste dander biochar (Mn-BC) was successfully prepared via impregnation and pyrolysis, and MnSO4 was formed on its surface. Mn-BC increases the carbon retention and reduces the emissions of CO2 and SO2 in way of forming CO, Mn-O-C bond and MnSO4. At the same time, the stability of the original biochar was reserved due to forming a conjugated structure (CC and pyridine-N bond), and the carbon sequestration content was increased to 25.63%. Importantly, the application of Mn-BC can directly regulate the transformation of microbial bacterial community and lead to create stable carbon dominant bacteria (Firmicutes). And the mineralization rate of SOC is reduced to 0.48 mg CO2/(g·d), together with an increased content of TOC (48.16%), thus the purpose of efficient carbon sequestration is achieved in soil.


Asunto(s)
Carbono , Suelo , Suelo/química , Secuestro de Carbono , Dióxido de Carbono , Alérgenos Animales , Carbón Orgánico/química , Bacterias
13.
Plant Cell ; 36(5): 1504-1523, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163641

RESUMEN

As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.


Asunto(s)
Fósforo , Plantas , Transducción de Señal , Fósforo/metabolismo , Transporte Biológico , Plantas/metabolismo , Raíces de Plantas/metabolismo , Fosfatos/metabolismo , Nutrientes/metabolismo
14.
J Environ Manage ; 351: 119843, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128209

RESUMEN

Heavy metal stabilization is an effective method to treat chromium in tannery sludge. Here we show that mainly investigated NaH2PO4 (MSP) and organic matter (OM) to stabilize chromium in tannery sludge. The experimental investigation revealed that the addition of montmorillonite (MMT) and MSP samples showed a significant increase in the percentage of reducible and oxidizable Cr in the former compared to the samples with the addition of MMT. This is attributed to the formation of Cr-O bond, which allows the MSP to undergo an inner-sphere complexation reaction with the metal oxide of Cr via ligand exchange. Significantly, the MSP moiety adsorbs on the surface of OM through monodentate, which increases the adsorption sites of OM for Cr6+ and promotes the reduction of Cr6+ to Cr3+. Moreover, PO43- reacts with Cr3+ to produce CrPO4 precipitation, thus reducing the free Cr3+ content. Finally, DFT calculations confirmed that a ternary system is formed between PO43-, OM, and Cr, and the binding energy is negative, which indicated that PO43- could co-stabilize Cr with OM.


Asunto(s)
Cromo , Metales Pesados , Cromo/química , Aguas del Alcantarillado/química , Residuos Industriales/análisis , Óxidos , Curtiembre
15.
Dalton Trans ; 52(47): 17792-17796, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37969004

RESUMEN

Hard-Soft Acid-Base (HSAB) principle plays an important guiding role in the design and synthesis of novel clusters and coordination compounds, in which "soft acids prefer to react with soft bases, while hard acids have an affinity for hard bases". Based on HSAB principle, four Ag/Ti heterometallic clusters, including Ag2Ti10, Ag2Ti11 with "Ti-encapsulated Ag" configurations, and two "Ag-encapsulated Ti" structures Ag2Ti2 and Ag2Ti12, were synthesized under solvothermal conditions. In addition, Ag2Ti12 exhibited an efficient and stable catalytic activity for sulfide oxidation. This work provides not only a new structural model for the modulation of the catalytic oxidative desulfurization properties of Ag/Ti heterometallic clusters but also a new insight of the utilization of phosphine-containing ligands to regulate the structure of Ag/Ti heterometallic clusters.

16.
BMC Anesthesiol ; 23(1): 331, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794331

RESUMEN

BACKGROUND: Based on electroencephalogram (EEG) analysis, index of consciousness (IoC) monitoring is a new technique for monitoring anesthesia depth. IoC is divided into IoC1 (depth of sedation) and IoC2 (depth of analgesia). The potential for concurrent monitoring of IoC1 and IoC2 to expedite postoperative convalescence remains to be elucidated. We investigated whether combined monitoring of IoC1 and IoC2 can effectively enhances postoperative recovery compared with bispectral index (BIS) in elderly patients undergoing laparoscopic urological surgery under general anesthesia. METHODS: In this prospective, controlled, double-blinded trail, 120 patients aged 65 years or older were arbitrarily assigned to either the IoC group or the control group (BIS monitoring). All patients underwent blood gas analysis at T1 (before anesthesia induction) and T2 (the end of operation). The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were administered to all patients at T0 (1 day before surgery) and T4 (7 days after surgery). Serum concentrations of C-reactive protein (CRP) and glial fibrillary acid protein (GFAP) were assessed at T1, T2, and T3 (24 h after surgery). Postoperative complications and the duration of hospitalization were subjected to comparative evaluation. RESULTS: The incidence of postoperative cognitive dysfunction (POCD) was notably lower in the IoC group (10%) than in the control group (31.7%) (P = 0.003). Postoperative serum CRP and GFAP concentrations exhibited significant differences at time points T2 (CRP: P = 0.000; GFAP: P = 0.000) and T3 (CRP: P = 0.003; GFAP: P = 0.008). Postoperative blood glucose levels (P = 0.000) and the overall rate of complications (P = 0.037) were significantly lower in Group IoC than in Group control. CONCLUSION: The employment of IoC monitoring for the management of elderly surgical patients can accelerate postoperative convalescence by mitigating intraoperative stress and reducing peripheral and central inflammatory injury. TRIAL REGISTRATION: Chinese Clinical Trial Registry Identifier: ChiCTR1900025241 (17/08/2019).


Asunto(s)
Convalecencia , Laparoscopía , Anciano , Humanos , Estado de Conciencia , Estudios Prospectivos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Proteína C-Reactiva/metabolismo , Anestesia General/métodos
17.
Toxics ; 11(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37888700

RESUMEN

Strontium is a common radionuclide in radioactive waste, and its release into the environment can cause enormous damage to the ecosystem environment. In this study, the natural mineral allophane was selected as the substrate to prepare solidified ceramic products by cold pressing/sintering to solve the problem of the final disposal of radioactive strontium. Ceramic solidified products with various crystal structures were successfully prepared, and the microscopic morphology and energy-dispersive spectroscopy images of the samples showed a uniform distribution of Sr in the solidified products. Sr2Al2SiO7 and SrAl2Si2O8, which can stably solidify strontium, were formed in the solidified products, and the structural characteristics and stability of the above-mentioned substances were analyzed from the perspective of quantum chemical calculations using density functional theory. The calculation results showed that the overall deformation resistance of Sr2Al2SiO7 was higher than that of SrAl2Si2O8. Considering the isomorphic substitution effect of CaO impurities, we inferred that a mixed-crystalline structure of Ca2-xSrxAl2SiO7 may be present in the solidified products.

18.
Angew Chem Int Ed Engl ; 62(43): e202312076, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37667537

RESUMEN

The effective conversion of carbon dioxide (CO2 ) and nitrogen (N2 ) into urea by photocatalytic reaction under mild conditions is considered to be a more environmentally friendly and promising alternative strategies. However, the weak adsorption and activation ability of inert gas on photocatalysts has become the main challenge that hinder the advancement of this technique. Herein, we have successfully established mesoporous CeO2-x nanorods with adjustable oxygen vacancy concentration by heat treatment in Ar/H2 (90 % : 10 %) atmosphere, enhancing the targeted adsorption and activation of N2 and CO2 by introducing oxygen vacancies. Particularly, CeO2 -500 (CeO2 nanorods heated treatment at 500 °C) revealed high photocatalytic activity toward the C-N coupling reaction for urea synthesis with a remarkable urea yield rate of 15.5 µg/h. Besides, both aberration corrected transmission electron microscopy (AC-TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to research the atomic surface structure of CeO2 -500 at high resolution and to monitor the key intermediate precursors generated. The reaction mechanism of photocatalytic C-N coupling was studied in detail by combining Density Functional Theory (DFT) with specific experiments. We hope this work provides important inspiration and guiding significance towards highly efficient photocatalytic synthesis of urea.

19.
Quant Imaging Med Surg ; 13(9): 6139-6151, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37711807

RESUMEN

Background: Broad generalization of radiomics-assisted models may be impeded by concerns about variability. This study aimed to evaluate the merit of combatting batch effect (ComBat) harmonization in reducing the variability of voxel size-related radiomics in both phantom and clinical study in comparison with image resampling correction method. Methods: A pulmonary phantom with 22 different types of nodules was scanned by computed tomography (CT) with different voxel sizes. The variability of voxel size-related radiomics features was evaluated using concordance correlation coefficient (CCC), dynamic range (DR), and intraclass correlation coefficient (ICC). ComBat and image resampling compensation methods were used to reduce variability of voxel size-related radiomics. The percentage of robust radiomics features was compared before and after optimization. Pathologically differential diagnosis of invasive adenocarcinoma (IAC) from adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) (AIS-MIA group) was used for clinical validation in 134 patients. Results: Before optimization, the number of excellent features in the phantom and clinical data was 26.12% and 32.31%, respectively. The excellent features were increased after image resampling and ComBat correction. For clinical optimization, the effect of the ComBat compensation method was significantly better than that of image resampling, with excellent features reaching 90.96% and poor features only amounting to 4.96%. In addition, the hierarchical clustering analysis showed that the first-order and shape features had better robustness than did texture features. In clinical validation, the area under the curve (AUC) of the testing set was 0.865 after ComBat correction. Conclusions: The ComBat harmonization can optimize voxel size-related CT radiomics variability in pulmonary nodules more efficiently than image resampling harmonization.

20.
BMC Surg ; 23(1): 258, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644425

RESUMEN

BACKGROUND: The current study aimed to investigate the incidence and risk factors for postoperative acute ischemic stroke (PAIS) in advanced-aged patients (≥ 75 years) with previous ischemic stroke undergoing noncardiac surgery. METHODS: In this single-center retrospective cohort study, all advanced-aged patients underwent noncardiac surgery from 1 January, 2019, to 30 April, 2022. Data were extracted from hospital electronic medical records. Multivariable logistic regression analysis was performed to determine predictors of PAIS. Multivariable linear or logistic regression analysis was performed to determine predictors of outcomes due to PAIS. RESULTS: Twenty-four patients (6.0%) of the 400 patients developed PAIS. Carotid endarterectomy (CEA), length of surgery and preoperative Modified Rankin scale (mRS) ≥ 3 were significant predictors of PAIS. CEA was associated with increased risk of PAIS (OR 4.14; 95%CI, 1.43-11.99). Each additional minute in length of surgery had slightly increased the risk of PAIS (OR, 1.01; 95%CI, 1.00-1.01). Compared with reference (mRS < 3), mRS ≥ 3 increased odds of PAIS (OR, 4.09;95%CI, 1.12-14.93). Surgery type and length of surgery were found to be significant predictors of in-hospital expense (P < 0.001) and hospital stays (P < 0.05). CONCLUSIONS: CEA, length of surgery and preoperative mRS ≥ 3 may increase the development of PAIS in advanced-aged patients (≥ 75 years) with previous stroke undergoing noncardiac surgery. PAIS increased in-hospital mortality and prolonged hospital stay.


Asunto(s)
Endarterectomía Carotidea , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Anciano , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular Isquémico/etiología , Estudios Retrospectivos , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA