Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
iScience ; 26(10): 107626, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37731616

Massive expansion of immature and suppressive myeloid cells is a common feature of malignant solid tumors. Over-expression of cyclin-dependent kinase 20, also known as cell cycle-related kinase (CCRK), in hepatocellular carcinoma (HCC) correlates with reduced patient survival and low immunotherapy responsiveness. Beyond tumor-intrinsic oncogenicity, here we demonstrated that CCRK is upregulated in myeloid cells in tumor-bearing mice and in patients with HCC. Intratumoral injection of Ccrk-knockdown myeloid-derived suppressor cells (MDSCs) increased tumor-infiltrating CD8+T cells and suppressed HCC tumorigenicity. Using an indel mutant transgenic model, we showed that Ccrk inactivation in myeloid cells conferred a mature phenotype with elevated IL-12 production, driving Th1 responses and CD8+T cell cytotoxicity to reduce orthotopic tumor growth and prolong survival. Mechanistically, CCRK activates STAT3/E4BP4 signaling in MDSCs to acquire immunosuppressive activity through transcriptional IL-10 induction and IL-12 suppression. Taken together, our findings unravel mechanistic insights into MDSC-mediated immunosuppression and offer a therapeutic kinase-target for cancer immunotherapy.

2.
Front Microbiol ; 14: 1215609, 2023.
Article En | MEDLINE | ID: mdl-37476664

Introduction: In metabolic engineering and synthetic biology applications, promoters with appropriate strengths are critical. However, it is time-consuming and laborious to annotate promoter strength by experiments. Nowadays, constructing mutation-based synthetic promoter libraries that span multiple orders of magnitude of promoter strength is receiving increasing attention. A number of machine learning (ML) methods are applied to synthetic promoter strength prediction, but existing models are limited by the excessive proximity between synthetic promoters. Methods: In order to enhance ML models to better predict the synthetic promoter strength, we propose EVMP(Extended Vision Mutant Priority), a universal framework which utilize mutation information more effectively. In EVMP, synthetic promoters are equivalently transformed into base promoter and corresponding k-mer mutations, which are input into BaseEncoder and VarEncoder, respectively. EVMP also provides optional data augmentation, which generates multiple copies of the data by selecting different base promoters for the same synthetic promoter. Results: In Trc synthetic promoter library, EVMP was applied to multiple ML models and the model effect was enhanced to varying extents, up to 61.30% (MAE), while the SOTA(state-of-the-art) record was improved by 15.25% (MAE) and 4.03% (R2). Data augmentation based on multiple base promoters further improved the model performance by 17.95% (MAE) and 7.25% (R2) compared with non-EVMP SOTA record. Discussion: In further study, extended vision (or k-mer) is shown to be essential for EVMP. We also found that EVMP can alleviate the over-smoothing phenomenon, which may contributes to its effectiveness. Our work suggests that EVMP can highlight the mutation information of synthetic promoters and significantly improve the prediction accuracy of strength. The source code is publicly available on GitHub: https://github.com/Tiny-Snow/EVMP.

3.
Gut ; 72(9): 1758-1773, 2023 09.
Article En | MEDLINE | ID: mdl-37019619

OBJECTIVE: Therapy-induced tumour microenvironment (TME) remodelling poses a major hurdle for cancer cure. As the majority of patients with hepatocellular carcinoma (HCC) exhibits primary or acquired resistance to antiprogrammed cell death (ligand)-1 (anti-PD-[L]1) therapies, we aimed to investigate the mechanisms underlying tumour adaptation to immune-checkpoint targeting. DESIGN: Two immunotherapy-resistant HCC models were generated by serial orthotopic implantation of HCC cells through anti-PD-L1-treated syngeneic, immunocompetent mice and interrogated by single-cell RNA sequencing (scRNA-seq), genomic and immune profiling. Key signalling pathway was investigated by lentiviral-mediated knockdown and pharmacological inhibition, and further verified by scRNA-seq analysis of HCC tumour biopsies from a phase II trial of pembrolizumab (NCT03419481). RESULTS: Anti-PD-L1-resistant tumours grew >10-fold larger than parental tumours in immunocompetent but not immunocompromised mice without overt genetic changes, which were accompanied by intratumoral accumulation of myeloid-derived suppressor cells (MDSC), cytotoxic to exhausted CD8+ T cell conversion and exclusion. Mechanistically, tumour cell-intrinsic upregulation of peroxisome proliferator-activated receptor-gamma (PPARγ) transcriptionally activated vascular endothelial growth factor-A (VEGF-A) production to drive MDSC expansion and CD8+ T cell dysfunction. A selective PPARγ antagonist triggered an immune suppressive-to-stimulatory TME conversion and resensitised tumours to anti-PD-L1 therapy in orthotopic and spontaneous HCC models. Importantly, 40% (6/15) of patients with HCC resistant to pembrolizumab exhibited tumorous PPARγ induction. Moreover, higher baseline PPARγ expression was associated with poorer survival of anti-PD-(L)1-treated patients in multiple cancer types. CONCLUSION: We uncover an adaptive transcriptional programme by which tumour cells evade immune-checkpoint targeting via PPARγ/VEGF-A-mediated TME immunosuppression, thus providing a strategy for counteracting immunotherapeutic resistance in HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Vascular Endothelial Growth Factor A , Liver Neoplasms/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , PPAR gamma , Tumor Microenvironment , B7-H1 Antigen
4.
Front Plant Sci ; 14: 1078978, 2023.
Article En | MEDLINE | ID: mdl-36925751

Although recent physiological studies demonstrate that flue-cured tobacco preferentially utilizes nitrate ( NO 3 - ) or ammonium nitrate (NH4NO3), and possesses both high- and low-affinity uptake systems for NO 3 - , little is known about the molecular component(s) responsible for acquisition and translocation in this crop. Here we provide experimental data showing that NtNRT1.1B with a 1,785-bp coding sequence exhibited a function in mediating NO 3 - transport associated with tobacco growth on NO 3 - nutrition. Heterologous expression of NtNRT1.1B in the NO 3 - uptake-defective yeast Hp△ynt1 enabled a growth recovery of the mutant on 0.5 mM NO 3 - , suggesting a possible molecular function of NtNRT1.1B in the import of NO 3 - into cells. Transient expression of NtNRT1.1B::green fluorescent protein (GFP) in tobacco leaf cells revealed that NtNRT1.1B targeted mainly the plasma membrane, indicating the possibility of NO 3 - permeation across cell membranes via NtNRT1.1B. Furthermore, promoter activity assays using a GFP marker clearly indicated that NtNRT1.1B transcription in roots may be down-regulated by N starvation and induced by N resupply, including NO 3 - , after 3 days' N depletion. Significantly, constitutive overexpression of NtNRT1.1B could remarkably enhance tobacco growth by showing a higher accumulation of biomass and total N, NO 3 - , and even NH 4 + in plants supplied with NO 3 - ; this NtNRT1.1B-facilitated N acquisition/accumulation could be strengthened by short-term 15N- NO 3 - root influx assays, which showed 15%-20% higher NO 3 - deposition in NtNRT1.1B-overexpressors as well as a high affinity of NtNRT1.1B for NO 3 - at a K m of around 30-45 µM. Together with the detection of NtNRT1.1B promoter activity in the root stele and shoot-stem vascular tissues, and higher NO 3 - in both xylem exudate and the apoplastic washing fluid of NtNRT1.1B-transgenic lines, NtNRT1.1B could be considered as a valuable molecular breeding target aiming at improving crop N-use efficiency by manipulating the absorption and long-distance distribution/transport of nitrate, thus adding a new functional homolog as a nitrate permease to the plant NRT1 family.

5.
Prog Biophys Mol Biol ; 177: 229-234, 2023 01.
Article En | MEDLINE | ID: mdl-36574883

As a noninvasive method, circulating tumor cell (CTC) provides ideal liquid biopsy specimens for early cancer screening and diagnosis. CTCs detection in breast cancer is correlated with patient prognosis such as disease-free survival (DFS) and overall survival (OS). Besides, accumulating evidence supported that CTCs count may be indicator for chemotherapy response as well. The functional roles of microRNA (miRNA) in breast cancer have been well-recognized for the last few years. Due to its stability in circulation, numerous studies have proven that circulating miRNA may serve as promising diagnostic and prognostic biomarkers in breast cancer. The potential ability of miRNAs in disease screening, staging or even molecular subtype classification makes them valuable tools for early breast cancer patients. It would be of great significance to characterize the miRNA expression profile in CTCs, which could provide reliable biological information originated from tumor. However, some issues need to be addressed before the utility of CTC-specific miRNAs in clinical setting. Taken together, we believe that CTC-specific miRNA detection will be trend for early breast cancer screening, diagnosis and treatment monitor in near future.


Breast Neoplasms , MicroRNAs , Neoplastic Cells, Circulating , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Neoplastic Cells, Circulating/pathology , MicroRNAs/genetics , Clinical Relevance , Disease-Free Survival
6.
J Med Chem ; 65(24): 16313-16337, 2022 12 22.
Article En | MEDLINE | ID: mdl-36449385

Histone deacetylases (HDACs) are epigenetic regulators and additionally control the activity of non-histone substrates. We recently demonstrated that inhibition of HDAC8 overexpressed in various of cancers reduces hepatocellular carcinoma tumorigenicity in a T cell-dependent manner. Here, we present alkylated hydrazide-based class I HDAC inhibitors in which the n-hexyl side chain attached to the hydrazide moiety shows HDAC8 selectivity in vitro. Analysis of the mode of inhibition of the most promising compound 7d against HDAC8 revealed a substrate-competitive binding mode. 7d marked induced acetylation of the HDAC8 substrates H3K27 and SMC3 but not tubulin in CD4+ T lymphocytes, and significantly upregulated gene expressions for memory and effector functions. Furthermore, intraperitoneal injection of 7d (10 mg/kg) in C57BL/6 mice increased interleukin-2 expression in CD4+ T cells and CD8+ T cell proportion with no apparent toxicity. This study expands a novel chemotype of HDAC8 inhibitors with T cell modulatory properties for future therapeutic applications.


Histone Deacetylase Inhibitors , Repressor Proteins , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Mice, Inbred C57BL , Histone Deacetylases/metabolism , Hydrazines
7.
Molecules ; 27(20)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36296646

There is a wide variety of kinds of lipids, and complex structures which determine the diversity and complexity of their functions. With the basic characteristic of water insolubility, lipid molecules are independent of the genetic information composed by genes to proteins, which determine the particularity of lipids in the human body, with water as the basic environment and genes to proteins as the genetic system. In this review, we have summarized the current landscape on hormone regulation of lipid metabolism. After the well-studied PI3K-AKT pathway, insulin affects fat synthesis by controlling the activity and production of various transcription factors. New mechanisms of thyroid hormone regulation are discussed, receptor α and ß may mediate different procedures, the effect of thyroid hormone on mitochondria provides a new insight for hormones regulating lipid metabolism. Physiological concentration of adrenaline induces the expression of extrapituitary prolactin in adipose tissue macrophages, which promotes fat weight loss. Manipulation of hormonal action has the potential to offer a new therapeutic horizon for the global burden of obesity and its associated complications such as morbidity and mortality.


Lipid Metabolism , Prolactin , Humans , Lipid Metabolism/physiology , Prolactin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Hormones/metabolism , Adipose Tissue/metabolism , Insulin/metabolism , Thyroid Hormones/metabolism , Epinephrine , Lipids , Transcription Factors/metabolism , Water/metabolism
8.
Cancer Lett ; 549: 215914, 2022 11 28.
Article En | MEDLINE | ID: mdl-36116740

Weighted gene co-expression network analysis (WGCNA) identified a cell-cycle module that is associated with poor prognosis and aggressiveness of glioma. One of the core members, Regulator of chromatin condensation 2 (RCC2) is a component of the chromosome passenger complex. Accumulating evidence suggests that RCC2 plays a vital role in the mitotic process and that abnormal RCC2 expression is involved in cancer development. Gene silencing experiments show that RCC2 is required for glioma cell proliferation and migration. RNA-Sequencing analysis reveals a dual role of RCC2 in both the cell cycle and metabolism. Specifically, RCC2 regulates G2/M progression via CDC2 phosphorylation at Tyrosine 15. Metabolomic analysis identifies a role for RCC2 in promoting the glycolysis and pentose phosphate pathway. RCC2 exerts effects on metabolism by stabilizing the transcription factor BACH1 at its C-terminus leading to the transcriptional upregulation of hexokinase 2 (HK2). These findings elucidate a novel PTEN/RCC2/BACH1/HK2 signaling axis that drives glioma progression through the dual regulation of mitotic cell cycle and glycolytic events.


Glioma , Hexokinase , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , Chromatin , Chromosomal Proteins, Non-Histone , Chromosomes/metabolism , Glioma/genetics , Glucose , Glycolysis , Guanine Nucleotide Exchange Factors , Hexokinase/genetics , Humans , RNA/metabolism , Transcription Factors/genetics , Tyrosine/metabolism , Up-Regulation
9.
Front Oncol ; 12: 903800, 2022.
Article En | MEDLINE | ID: mdl-35924148

Breast cancer is one of the leading causes of mortality in females. Over the past decades, intensive efforts have been made to uncover the pathogenesis of breast cancer. Interleukin-6 (IL-6) is a pleiotropic factor which has a vital role in host defense immunity and acute stress. Moreover, a wide range of studies have identified the physiological and pathological roles of IL-6 in inflammation, immune and cancer. Recently, several IL-6 signaling pathway-targeted monoclonal antibodies have been developed for cancer and immune therapy. Combination of IL-6 inhibitory antibody with other pathways blockage drugs have demonstrated promising outcome in both preclinical and clinical trials. This review focuses on emerging studies on the strong linkages of IL-6/IL-6R mediated regulation of inflammation and immunity in cancer, especially in breast cancer.

10.
Plant Signal Behav ; 17(1): 2081420, 2022 12 31.
Article En | MEDLINE | ID: mdl-35642507

Dehydration-responsive element-binding proteins (DREBs) belong to members of the AP2/ERF transcription factor superfamily, which has been reported to involve various abiotic-stress responses and tolerance in plants. However, research on the DREB-family is still limited in alfalfa (Medicago sativa L.), a forage legume cultivated worldwide. The recent genome-sequence release of the alfalfa cultivar "XinJiangDaYe" allowed us to identify 172 DREBs by a multi-step homolog search. The phylogenetic analysis indicated that such MsDREBs could be classified into 5 groups, namely A-1 (56 members), A-2 (39), A-3 (3), A-4 (61) and 13 (A-5 (13), thus adding substantial new members to the DREB-family in alfalfa. Furthermore, a comprehensive survey in silico of conserved motif, gene structure, molecular weight, and isoelectric point (pI) as well as gene expression was conducted. The resulting data showed that, for cold-stress response, 33 differentially expressed MsDREBs were identified with a threshold of Log2-fold > 1, and most of which were transcriptionally upregulated within 48 h during a cold treatment(s). Moreover, the expression profiling of MsDREBs from two ecotypes of alfalfa subspecies i.e. M. sativa ssp. falcata (F56, from a colder region of Central Asia) and M. sativa ssp. sativa (B47, from Near East) revealed that most of the cold-stress responsive MsDREBs exhibited a significantly lower expression in F56, leading to a proposal of the existence of a distinct mechanism(s) for cold tolerance regulated by DREB-related action, which would have been evolved in alfalfa with a genotypic specificity. Additionally, by examining the transcriptome of a freezing-tolerance species (M. sativa cv. Zhaodong), eight DREBs were found to be implicated in a long-term freezing-stress adaptation with a great potential. Taken together, the current genome-wide identification in alfalfa points to the importance of some MsDREBs in the cold-stress response, providing some promising molecular targets to be functionally characterized for the improvement of cold tolerance in crops including alfalfa.


Cold-Shock Response , Medicago sativa , Cold-Shock Response/genetics , Gene Expression Regulation, Plant/genetics , Medicago sativa/genetics , Medicago sativa/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Cell Mol Immunol ; 19(7): 834-847, 2022 07.
Article En | MEDLINE | ID: mdl-35595819

Obesity is a major risk factor for cancers including hepatocellular carcinoma (HCC) that develops from a background of non-alcoholic fatty liver disease (NAFLD). Hypercholesterolemia is a common comorbidity of obesity. Although cholesterol biosynthesis mainly occurs in the liver, its role in HCC development of obese people remains obscure. Using high-fat high-carbohydrate diet-associated orthotopic and spontaneous NAFLD-HCC mouse models, we found that hepatic cholesterol accumulation in obesity selectively suppressed natural killer T (NKT) cell-mediated antitumor immunosurveillance. Transcriptome analysis of human liver revealed aberrant cholesterol metabolism and NKT cell dysfunction in NAFLD patients. Notably, cholesterol-lowering rosuvastatin restored NKT expansion and cytotoxicity to prevent obesogenic diet-promoted HCC development. Moreover, suppression of hepatic cholesterol biosynthesis by a mammalian target of rapamycin (mTOR) inhibitor vistusertib preceded tumor regression, which was abolished by NKT inactivation but not CD8+ T cell depletion. Mechanistically, sterol regulatory element-binding protein 2 (SREBP2)-driven excessive cholesterol production from hepatocytes induced lipid peroxide accumulation and deficient cytotoxicity in NKT cells, which were supported by findings in people with obesity, NAFLD and NAFLD-HCC. This study highlights mTORC1/SREBP2/cholesterol-mediated NKT dysfunction in the tumor-promoting NAFLD liver microenvironment, providing intervention strategies that invigorating NKT cells to control HCC in the obesity epidemic.


Carcinoma, Hepatocellular , Liver Neoplasms , Natural Killer T-Cells , Non-alcoholic Fatty Liver Disease , Animals , Cholesterol/metabolism , Humans , Liver/pathology , Mammals , Mice , Monitoring, Immunologic/adverse effects , Non-alcoholic Fatty Liver Disease/pathology , Obesity/pathology , Tumor Microenvironment
12.
Cancer Lett ; 525: 115-130, 2022 01 28.
Article En | MEDLINE | ID: mdl-34736960

Hepatocellular carcinoma (HCC) is a major cancer burden worldwide with increasing incidence in many developed countries. Super-enhancers (SEs) drive gene expressions required for cell type-specificity and tumor cell identity. However, their roles in HCC remain unclear because of data scarcity from primary tumors. Herein, chromatin profiling of non-alcoholic fatty liver disease (NAFLD)-associated HCCs and matched liver tissues uncovered an average of ∼500 somatically-acquired SEs per patient. The identified SE-target genes were functionally enriched for aberrant metabolism and cancer phenotypes, especially chromatin regulators including deacetylases and Polycomb repressive complexes. Notably, all examined tumors exhibited SE activation of Sirtuin 7 (SIRT7), genome-wide promoter H3K18 deacetylation and concurrent H3K27me3, as well as tumor-suppressor gene silencing. Depletion of SIRT7 SE in hepatoma cells induced global H3K18 acetylation and reactivated key metabolic and immune regulators, leading to marked suppression of tumorigenicity in vitro and in vivo. In concordance, SIRT7 physically interacted with the methyltransferase EZH2, and they were co-expressed in primary HCCs. In summary, our integrative analysis establishes a compendium of SEs in NAFLD-associated HCCs and uncovers SIRT7-driven chromatin regulatory network as potential druggable vulnerability of this increasingly prevalent cancer.


Carcinoma, Hepatocellular/genetics , Enhancer Elements, Genetic/genetics , Liver Neoplasms/genetics , Sirtuins/genetics , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Cellular Reprogramming/genetics , Epigenomics , Female , Gene Silencing , Humans , Liver Neoplasms/pathology , Male , Sirtuins/antagonists & inhibitors
13.
Clin Genet ; 101(1): 110-115, 2022 01.
Article En | MEDLINE | ID: mdl-34494659

The treatment of recessive dystrophic epidermolysis bullosa (RDEB) remains challenging. Elevated IgE levels have previously been reported in several RDEB patients. In this prospective, single-centre, open intervention study, elevated IgE levels were seen in 11 out of 12 patients with intense pruritus, and the patients with elevated IgE levels received anti-IgE therapy every 4 weeks for at least three cycles. Compared with the baseline, 10 patients with RDEB had good clinical outcomes with enhanced wound healing, a reduction in Birmingham (epidermolysis bullosa) EB severity score by 15%, a reduction in affected body surface area by 23.3%, amelioration of skin inflammation, and an increase in type VII collagen deposition by 13.1-fold. All the patients had a good tolerance to anti-IgE therapy. Furthermore, patients with higher IgE levels tended to have higher disease severity and more favorable clinical outcomes. Our report also suggested the potential role of IgE in the pathogenesis of inflammatory conditions associated with RDEB. (ChiCTR1900021437).


Antibodies, Anti-Idiotypic/therapeutic use , Epidermolysis Bullosa Dystrophica/drug therapy , Adolescent , Adult , Antibodies, Anti-Idiotypic/administration & dosage , Antibodies, Anti-Idiotypic/adverse effects , Autoimmunity , Biopsy , Child , Collagen Type VII/immunology , Disease Management , Disease Susceptibility/immunology , Epidermolysis Bullosa Dystrophica/diagnosis , Epidermolysis Bullosa Dystrophica/etiology , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Middle Aged , Severity of Illness Index , Skin/immunology , Skin/metabolism , Skin/pathology , Treatment Outcome , Wound Healing , Young Adult
14.
Sci Prog ; 104(3): 368504211028395, 2021.
Article En | MEDLINE | ID: mdl-34510991

Breast cancer is one the most common malignancies and leading cause of cancer-related mortality in women. Recent studies suggested that hypercholesterolemia may be the potential modifiable risk factors for breast cancer. Cholesterol was well-known for its strong association with cardiovascular disease for long. Moreover, solid evidence has been provided by different studies to illustrate the correlation between lipid and incidence in multiple cancers. Although the conclusion remains controversial or sometimes contrary, which may be due to the multifactorial nature of the disease and the disparity of ethnic population, it is critical to elucidate the relationship between specific cholesterol components in certain population and the exact underlying mechanism of the lipid-associated signaling pathway in breast cancer. The implications of dysregulated lipoproteins as therapeutic targets or options for breast cancer provide novel strategies for us in combating with this malignant disease, which may be achieved by manipulating lipid levels with pharmacological compounds.


Breast Neoplasms , Cardiovascular Diseases , Hypercholesterolemia , Breast Neoplasms/drug therapy , Cardiovascular Diseases/epidemiology , Cholesterol/metabolism , Cholesterol/therapeutic use , Female , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/metabolism , Risk Factors
15.
Sci Transl Med ; 13(588)2021 04 07.
Article En | MEDLINE | ID: mdl-33827976

Insufficient T cell infiltration into noninflamed tumors, such as hepatocellular carcinoma (HCC), restricts the effectiveness of immune-checkpoint blockade (ICB) for a subset of patients. Epigenetic therapy provides further opportunities to rewire cancer-associated transcriptional programs, but whether and how selective epigenetic inhibition counteracts the immune-excluded phenotype remain incompletely defined. Here, we showed that pharmacological inhibition of histone deacetylase 8 (HDAC8), a histone H3 lysine 27 (H3K27)-specific isozyme overexpressed in a variety of human cancers, thwarts HCC tumorigenicity in a T cell-dependent manner. The tumor-suppressive effect of selective HDAC8 inhibition was abrogated by CD8+ T cell depletion or regulatory T cell adoptive transfer. Chromatin profiling of human HDAC8-expressing HCCs revealed genome-wide H3K27 deacetylation in 1251 silenced enhancer-target gene pairs that are enriched in metabolic and immune regulators. Mechanistically, down-regulation of HDAC8 increased global and enhancer acetylation of H3K27 to reactivate production of T cell-trafficking chemokines by HCC cells, thus relieving T cell exclusion in both immunodeficient and humanized mouse models. In an HCC preclinical model, selective HDAC8 inhibition increased tumor-infiltrating CD8+ T cells and potentiated eradication of established hepatomas by anti-PD-L1 therapy without evidence of toxicity. Mice treated with HDAC8 and PD-L1 coblockade were protected against subsequent tumor rechallenge as a result of the induction of memory T cells and remained tumor-free for greater than 15 months. Collectively, our study demonstrates that selective HDAC8 inhibition elicits effective and durable responses to ICB by co-opting adaptive immunity through enhancer reprogramming.


Carcinoma, Hepatocellular , Histone Deacetylase Inhibitors , Immune Checkpoint Inhibitors , Liver Neoplasms , Animals , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases , Humans , Immune Checkpoint Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Mice , Repressor Proteins
16.
Stem Cells Int ; 2021: 8834590, 2021.
Article En | MEDLINE | ID: mdl-33505474

Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.

17.
Cell Mol Immunol ; 18(4): 1005-1015, 2021 04.
Article En | MEDLINE | ID: mdl-32879468

The liver is an immunologically tolerant organ and a common metastatic site of multiple cancer types. Although a role for cancer cell invasion programs has been well characterized, whether and how liver-intrinsic factors drive metastatic spread is incompletely understood. Here, we show that aberrantly activated hepatocyte-intrinsic cell cycle-related kinase (CCRK) signaling in chronic liver diseases is critical for cancer metastasis by reprogramming an immunosuppressive microenvironment. Using an inducible liver-specific transgenic model, we found that CCRK overexpression dramatically increased both B16F10 melanoma and MC38 colorectal cancer (CRC) metastasis to the liver, which was highly infiltrated by polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) and lacking natural killer T (NKT) cells. Depletion of PMN-MDSCs in CCRK transgenic mice restored NKT cell levels and their interferon gamma production and reduced liver metastasis to 2.7% and 0.7% (metastatic tumor weights) in the melanoma and CRC models, respectively. Mechanistically, CCRK activated nuclear factor-kappa B (NF-κB) signaling to increase the PMN-MDSC-trafficking chemokine C-X-C motif ligand 1 (CXCL1), which was positively correlated with liver-infiltrating PMN-MDSC levels in CCRK transgenic mice. Accordingly, CRC liver metastasis patients exhibited hyperactivation of hepatic CCRK/NF-κB/CXCL1 signaling, which was associated with accumulation of PMN-MDSCs and paucity of NKT cells compared to healthy liver transplantation donors. In summary, this study demonstrates that immunosuppressive reprogramming by hepatic CCRK signaling undermines antimetastatic immunosurveillance. Our findings offer new mechanistic insights and therapeutic targets for liver metastasis intervention.


Cell Cycle , Colorectal Neoplasms/immunology , Liver Neoplasms/immunology , Melanoma, Experimental/immunology , Myeloid-Derived Suppressor Cells/immunology , Natural Killer T-Cells/immunology , Tumor Microenvironment , Animals , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic
18.
Front Genet ; 11: 597795, 2020.
Article En | MEDLINE | ID: mdl-33363573

Emerging evidence suggests that long non-coding RNA (lncRNA) plays a critical role in human disease progression. Recently, a novel lncRNA ST8SIA6-AS1 was shown as an important driver in various cancer types. Nevertheless, its contribution to lung adenocarcinoma (LUAD) remains undocumented. Herein, we found that ST8SIA6-AS1 was frequently overexpressed in LUAD cell lines, tissues, and plasma. Depletion of ST8SIA6-AS1 significantly inhibited LUAD cell proliferation and invasion in vitro and tumor growth in vivo. In term of mechanism, ST8SIA6-AS1 was transcriptionally repressed by tumor suppressor p53, and ST8SIA6-AS1 was mainly located in the cytoplasm and could abundantly sponge miR-125a-3p to increase nicotinamide N-methyltransferase (NNMT) expression, thereby facilitating LUAD malignant progression. Clinically, high ST8SIA6-AS1 was positively correlated with larger tumor size, lymph node metastasis, and later TNM stage. Moreover, ST8SIA6-AS1 was identified as an excellent indicator for MM diagnosis and prognosis. Collectively, our data demonstrate that ST8SIA6-AS1 is a carcinogenic lncRNA in LUAD, and targeting the axis of ST8SIA6-AS1/miR-125a-3p/NNMT may be a promising treatment for LUAD patients.

19.
Am J Transl Res ; 12(10): 6076-6091, 2020.
Article En | MEDLINE | ID: mdl-33194015

Tuberculosis (TB) immunity is affected by complex immune regulation processes, which involve various immune cells, immune molecules, and cytokines. Here, we evaluated the expression of B12, CD272 and miR-16 in peripheral blood mononuclear cells (PBMC) of patients with active pulmonary tuberculosis. The results showed that monocytes expressing CD272 or B12 were down-regulated in patients with tuberculosis. The expression of B12 and CD272 in T cells and monocytes is related to tuberculosis. In TB patients, the up-regulation of miR-16 was negatively correlated with B12 mRNA expression, miR-16 was mainly expressed in CD14+ monocytes, and CD272 mRNA was mainly expressed in CD19+ B cells. It is worth noting that the overexpression of miR-16 inhibits the expression of CD272 and B12 in monocytes of TB patients. After BCG stimulation, miR-16 expression of CD14+ monocytes was up-regulated and B12 mRNA and CD272 mRNA expressions were down-regulated in TB patients. Finally, we found that miR-16 may participate in the TB immunization process through targeted regulation of B12 expression. These studies indicate that the expression of B12, CD272 and miR-16 in PBMC may be related to tuberculosis.

20.
Am J Cancer Res ; 10(9): 2865-2877, 2020.
Article En | MEDLINE | ID: mdl-33042622

Cellular metabolism reprogramming is a hallmark in cancers including breast cancer. Switching off the glycolytic energy in cancer has been indicated as one of the anti-cancer strategies. Aberrant haptoglobin (HP) expression has been shown to cause metabolic dysfunction and implicated in different malignancies. However, its roles in breast cancer and glycolysis remain elusive. Here, we reported HP was upregulated in breast cancer tissues and the circulation. HP conferred oncogenic roles by regulating cell cycle progression and apoptosis in breast cancer cells. Further analysis identified the correlation between HP and glycolytic enzymes such as glucose-6-phosphate isomerase (GPI) and hexokinase (HK). Glycolytic activities were altered upon HP knockdown which were confirmed by glucose uptake and LDH activity assays. GPI was found to be downstream effector of HP while knockdown of GPI led to decreased glycolytic activity and restored oxygen consumption. GPI silencing decreased cell migration/invasion ability and sensitized breast cancer cells to chemo-drug. Moreover, animal study suggested inhibition of both HP and GPI significantly impeded tumor growth in mice. Collectively, we report for the first time the oncogenic roles of HP, at least partially, through regulating glycolysis and its downstream effector, GPI, contributes in maintaining EMT and chemoresistance in breast cancer.

...