Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
BMC Genomics ; 25(1): 785, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138417

RESUMEN

To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.


Asunto(s)
Alimentación Animal , Bidens , Microbioma Gastrointestinal , Tilapia , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Tilapia/genética , Tilapia/metabolismo , Bidens/metabolismo , Bidens/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transcriptoma , Hígado/metabolismo
2.
Animals (Basel) ; 14(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891732

RESUMEN

The Pacific blue shrimp (Litopenaeus stylirostris) is a premium product in the international seafood market. However, intensified farming has increased disease incidence and reduced genetic diversity. In this study, we developed a transcriptome database for L. stylirostris and mined microsatellite markers to analyze their genetic diversity. Using the Illumina HiSeq 4000 platform, we identified 53,263 unigenes from muscle, hepatopancreas, the intestine, and lymphoid tissues. Microsatellite analysis identified 36,415 markers from 18,657 unigenes, predominantly dinucleotide repeats. Functional annotation highlighted key disease resistance pathways and enriched categories. The screening and PCR testing of 42 transcriptome-based and 58 literature-based markers identified 40 with successful amplification. The genotyping of 200 broodstock samples revealed that Na, Ho, He, PIC, and FIS values were 3, 0.54 ± 0.05, 0.43 ± 0.09, 0.41 ± 0.22, and 0.17 ± 0.27, respectively, indicating moderate genetic variability and significant inbreeding. Four universal microsatellite markers (CL1472.Contig13, CL517.Contig2, Unigene5692, and Unigene7147) were identified for precise diversity analysis in Pacific blue, Pacific white (Litopenaeus vannamei), and black tiger shrimps (Penaeus monodon). The transcriptome database supports the development of markers and functional gene analysis for selective breeding programs. Our findings underscore the need for an appropriate genetic management system to mitigate inbreeding depression, reduce disease susceptibility, and preserve genetic diversity in farmed shrimp populations.

3.
Sci Rep ; 14(1): 11584, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773245

RESUMEN

Climate change and disease threaten shrimp farming. Here, we studied the beneficial properties of a phytogenic formulation, Shrimp Best (SB), in whiteleg shrimp. Functional studies showed that SB dose-dependently increased shrimp body weight and decreased feed conversion ratio. We found that SB protected against Vibrio parahaemolyticus as evidenced by survival rate, bacterial load, and hepatopancreatic pathology in shrimp. Finally, we explored the likely mechanism by which SB affects growth performance and vibriosis in shrimp. The 16S rRNA sequencing data showed that SB increased 6 probiotic genera and decreased 6 genera of pathogenic bacteria in shrimp. Among these, SB increased the proportion of Lactobacillus johnsonii and decreased that of V. parahaemolyticus in shrimp guts. To dissect the relationship among SB, Lactobacillus and Vibrio, we investigated the in vitro regulation of Lactobacillus and Vibrio by SB. SB at ≥ 0.25 µg/mL promoted L. johnsonii growth. Additionally, L. johnsonii and its supernatant could inhibit V. parahaemolyticus. Furthermore, SB could up-regulate five anti-Vibrio metabolites of L. johnsonii, which caused bacterial membrane destruction. In parallel, we identified 3 fatty acids as active compounds from SB. Overall, this work demonstrated that SB improved growth performance and vibriosis protection in shrimp via the regulation of gut microbiota.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Animales , Penaeidae/microbiología , Penaeidae/crecimiento & desarrollo , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/crecimiento & desarrollo , Vibrio parahaemolyticus/patogenicidad , Vibriosis/prevención & control , Vibriosis/veterinaria , Vibriosis/microbiología , Lactobacillus/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Vibrio/efectos de los fármacos , Vibrio/patogenicidad , Probióticos
4.
Pathogens ; 13(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38787263

RESUMEN

Actinobacillus pleuropneumoniae (APP) is a major cause of lung infections in pigs. An experimental mouse has the edge over pigs pertaining to the ease of experimental operation, disease study and therapy, abundance of genetic resources, and cost. However, it is a challenge to introduce APP into a mouse lung due to the small respiratory tract of mice and bacterial host tropism. In this study, an effective airborne transmission of APP serovar 1 (APP1) was developed in mice for lung infection. Consequently, APP1 infected BALB/c mice and caused 60% death within three days of infection at the indicated condition. APP1 seemed to enter the lung and, in turn, spread to other organs of the mice over the first 5 days after infection. Accordingly, APP1 damaged the lung as evidenced by its morphological and histological examinations. Furthermore, ampicillin fully protected mice against APP1 as shown by their survival, clinical symptoms, body weight loss, APP1 count, and lung damages. Finally, the virulence of two extra APP strains, APP2 and APP5, in the model was compared based on the survival rate of mice. Collectively, this study successfully established a fast and reliable mouse model of APP which can benefit APP research and therapy. Such a model is a potentially useful model for airway bacterial infections.

5.
Bioengineering (Basel) ; 10(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37370564

RESUMEN

Over 70,000 people die of bacterial infections worldwide annually. Antibiotics have been liberally used to treat these diseases and, consequently, antibiotic resistance and drug ineffectiveness has been generated. In this environment, new anti-bacterial compounds are being urgently sought. Around 500 Artemisia species have been identified worldwide. Most species of this genus are aromatic and have multiple functions. Research into the Artemisia plants has expanded rapidly in recent years. Herein, we aim to update and summarize recent information about the phytochemistry, pharmacology and toxicology of the Artemisia plants. A literature search of articles published between 2003 to 2022 in PubMed, Google Scholar, Web of Science databases, and KNApSAcK metabolomics databases revealed that 20 Artemisia species and 75 compounds have been documented to possess anti-bacterial functions and multiple modes of action. We focus and discuss the progress in understanding the chemistry (structure and plant species source), anti-bacterial activities, and possible mechanisms of these phytochemicals. Mechanistic studies show that terpenoids, flavonoids, coumarins and others (miscellaneous group) were able to destroy cell walls and membranes in bacteria and interfere with DNA, proteins, enzymes and so on in bacteria. An overview of new anti-bacterial strategies using plant compounds and extracts is also provided.

6.
ACS Chem Neurosci ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026580

RESUMEN

Ceramides, structural components of the cell, are known to play a range of roles in glucose metabolism and apoptosis. C16-ceramide, an abundant molecular species of endogenous ceramide, has not had its influence on learning and memory explored. We administered C16-ceramide to mice immediately after weaning and examined the learning and memory behavior of these mice during adulthood. Mice given C16-ceramide early in life showed improved adult learning/short-term memory behavior without affecting their glucose metabolism. Looking for a plausible mechanism for this, we found that calcium influx, CaMKII/CREB, and the Erk-relevant signaling transduction are increased after C16-ceramide stimulation in primary neurons in vitro. Possible downstream epigenetic molecular events, such as H3K4 methylation and Egr-1 abundance, were also found to be upregulated. Utilizing J20 mice, an Alzheimer disease mice model in which mice were injected after weaning with C16-ceramide, we found that these mice also show improved learning and short-term memory behavior when assessed by the Morris water maze test. Taken together, giving C16-ceramide early in life would seem to benefit learning and short-term memory behavior during adulthood.

7.
Bioengineering (Basel) ; 10(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978737

RESUMEN

Gut microbiota play a key role in health maintenance and disease pathogenesis in animals. Dietary phytochemicals are crucial factors shaping gut bacteria. Here, we investigated the function and mechanism of a phytogenic formulation, EUBIO-BPSG (BP), in laying hens. We found that BP dose-dependently improved health and egg production in 54-week-old hens. Furthermore, BP was correlated with increased fecal Lactobacillus, decreased Escherichia coli and Salmonella enterica, and reduced antibiotic resistance (AR) and antibiotic resistance genes (ARG) in chicken stools. The 16S rDNA data showed that BP increased seven genera of probiotics and reduced 13 genera of pathogens in chicken feces. In vitro co-culture experiments showed that BP at 4 µg/mL and above promoted growth of L. reuteri while large 100- and 200-fold higher doses suppressed growth of E. coli and S. enterica, respectively. Mechanistic studies indicated that L. reuteri and its supernatants antagonized growth of E. coli and S. enterica but not vice-versa. Five short-chain fatty acids and derivatives (SCFA) produced from L. reuteri directly killed both pathogens via membrane destruction. Furthermore, BP inhibited conjugation and recombination of ARG via interference with conjugation machinery and integrase activity in E. coli. Collectively, this work suggests that BP promotes host health and reproductive performance in laying hens through regulation of gut microbiota through increasing probiotics and decreasing pathogens and spreading ARG.

8.
Cell Mol Life Sci ; 80(4): 101, 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36935456

RESUMEN

Pdia4 has been characterized as a key protein that positively regulates ß-cell failure and diabetes via ROS regulation. Here, we investigated the function and mechanism of PS1, a Pdia4 inhibitor, in ß-cells and diabetes. We found that PS1 had an IC50 of 4 µM for Pdia4. Furthermore, PS1 alone and in combination with metformin significantly reversed diabetes in db/db mice, 6 to 7 mice per group, as evidenced by blood glucose, glycosylated hemoglobin A1c (HbA1c), glucose tolerance test, diabetic incidence, survival and longevity (P < 0.05 or less). Accordingly, PS1 reduced cell death and dysfunction in the pancreatic ß-islets of db/db mice as exemplified by serum insulin, serum c-peptide, reactive oxygen species (ROS), islet atrophy, and homeostatic model assessment (HOMA) indices (P < 0.05 or less). Moreover, PS1 decreased cell death in the ß-islets of db/db mice. Mechanistic studies showed that PS1 significantly increased cell survival and insulin secretion in Min6 cells in response to high glucose (P < 0.05 or less). This increase could be attributed to a reduction in ROS production and the activity of electron transport chain complex 1 (ETC C1) and Nox in Min6 cells by PS1. Further, we found that PS1 inhibited the enzymatic activity of Pdia4 and mitigated the interaction between Pdia4 and Ndufs3 or p22 in Min6 cells (P < 0.01 or less). Taken together, this work demonstrates that PS1 negatively regulated ß-cell pathogenesis and diabetes via reduction of ROS production involving the Pdia4/Ndufs3 and Pdia4/p22 cascades.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucemia/metabolismo , Ratones Endogámicos , Ratones Endogámicos C57BL , Proteína Disulfuro Isomerasas/metabolismo
9.
Clin Transl Med ; 12(2): e606, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35170261

RESUMEN

BACKGROUND: Protein disulfide isomerases a4 (Pdia4) is known to be involved in cancer development. Our previous publication showed that Pdia4 positively promotes cancer development via its inhibition of procaspase-dependent apoptosis in cancer cells. However, nothing is known about its role in the cancer microenvironment. RESULTS: Here, we first found that Pdia4 expression in lung cancer was negatively correlated with patient survival. Next, we investigated the impact of host Pdia4 in stromal cells during cancer development. We showed that Pdia4 was expressed at a low level in stromal cells, and this expression was up-regulated akin to its expression in cancer cells. This up-regulation was stimulated by tumour cell-derived stimuli. Genetics studies in tumour-bearing wild-type and Pdia4-/- mice showed that host Pdia4 promoted lung cancer development in the mice via cancer stroma. This promotion was abolished in Rag1-/- mice which lacked T and B cells. This promotion could be restored once T and B cells were added back to Rag1-/- mice. In addition, host Pdia4 positively regulated the number and immunosuppressive function of stromal cells. Mechanistic studies showed that host Pdia4 positively controlled the Stat3/Vegf pathway in T and B lymphocytes via its stabilization of activated Stat3 in a Thioredoxin-like domain (CGHC)-dependent manner. CONCLUSIONS: These findings identify Pdia4 as a possible target for intervention in cancer stroma, suggesting that targeting Pdia4 in cancer stroma is a promising anti-cancer approach.


Asunto(s)
Neoplasias Pulmonares/etiología , Proteína Disulfuro Isomerasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Células del Estroma/metabolismo , Animales , Apoptosis , Ratones
10.
Planta Med ; 88(3-04): 282-291, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34187059

RESUMEN

Currently, antibiotics are commonly used to treat coccidiosis, a severe protozoal disease in chickens. However, due to growing concerns about the antibiotic residue in meat and eggs, phytogenic formulations are becoming an attractive approach to manage this disease. In this study, we investigated the anti-coccidial function and mechanism of phytogenic formulations composed of Bidens pilosa, Artemisia indica, and both used in combination. We found that these formulations increased the survival rate and reduced body weight loss, the feed conversion ratio, oocyst excretion, bloody stools, and gut lesions of chickens. Mechanistic studies showed that A. indica, but not B. pilosa, reduced the survival of Eimeria oocysts. Accordingly, they both inhibited oocyst sporulation and sporozoite invasion into Madin-Darby bovine kidney (MDBK) cells. Overall, we demonstrate that these formulations protect chickens against coccidiosis. Moreover, a combination of B. pilosa and A. indica has an additive effect on coccidiosis control and growth performance in chickens compared to either one used alone.


Asunto(s)
Artemisia , Bidens , Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Animales , Artemisia/química , Bovinos , Pollos , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria
11.
Antioxidants (Basel) ; 10(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34679653

RESUMEN

Patients with chronic kidney disease (CKD) are at an increased risk of premature death due to the development of cardiovascular disease (CVD) owing to atherosclerosis-mediated cardiovascular events. However, the mechanisms linking CKD and CVD are clear, and the current treatments for high-risk groups are limited. In this study, we aimed to examine the effects of sesamol, a natural compound extracted from sesame oil, on the development of atherosclerosis in a rodent CKD model, and reactive oxygen species-induced oxidative damage in an endothelial cell model. ApoE-/- mice were subjected to 5/6 nephrectomy (5/6 Nx) and administered sesamol for 8 weeks. Compared with the sham group, the 5/6 Nx ApoE-/- mice showed a significant increase in malondialdehyde levels and Oil Red O staining patterns, which significantly decreased following sesamol administration. Sesamol suppressed H2O2-induced expression of phospho-IKKα, p53, and caspase-3. Our results highlight the protective role of sesamol in renal injury-associated atherosclerosis and the pathological importance of oxidative stress burden in CKD-CVD interaction.

12.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638650

RESUMEN

Reactive oxygen species (ROS)-induced vascular endothelial cell apoptosis is strongly associated with atherosclerosis progression. Herein, we aimed to examine whether Kansuinine A (KA), extracted from Euphorbia kansui L., prevents atherosclerosis development in a mouse model and inhibits cell apoptosis through oxidative stress reduction. Atherosclerosis development was analyzed in apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (HFD) using Oil Red O staining and H&E staining. Human aortic endothelial cells (HAECs) were treated with KA, followed by hydrogen peroxide (H2O2), to investigate the KA-mediated inhibition of ROS-induced oxidative stress and cell apoptosis. Oil Red O staining and H&E staining showed that atherosclerotic lesion size was significantly smaller in the aortic arch of ApoE-/- mice in the HFD+KA group than that in the aortic arch of those in the HFD group. Further, KA (0.1-1.0 µM) blocked the H2O2-induced death of HAECs and ROS generation. The H2O2-mediated upregulation of phosphorylated IKKß, phosphorylated IκBα, and phosphorylated NF-κB was suppressed by KA. KA also reduced the Bax/Bcl-2 ratio and cleaved caspase-3 expression, preventing H2O2-induced vascular endothelial cell apoptosis. Our results indicate that KA may protect against ROS-induced endothelial cell apoptosis and has considerable clinical potential in the prevention of atherosclerosis and cardiovascular diseases.


Asunto(s)
Aorta/efectos de los fármacos , Apoptosis/efectos de los fármacos , Aterosclerosis/tratamiento farmacológico , Diterpenos/farmacología , Células Endoteliales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Aorta/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Quinasa I-kappa B/metabolismo , Ratones , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos
13.
EMBO Mol Med ; 13(10): e11668, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34542937

RESUMEN

Loss of ß-cell number and function is a hallmark of diabetes. ß-cell preservation is emerging as a promising strategy to treat and reverse diabetes. Here, we first found that Pdia4 was primarily expressed in ß-cells. This expression was up-regulated in ß-cells and blood of mice in response to excess nutrients. Ablation of Pdia4 alleviated diabetes as shown by reduced islet destruction, blood glucose and HbA1c, reactive oxygen species (ROS), and increased insulin secretion in diabetic mice. Strikingly, this ablation alone or in combination with food reduction could fully reverse diabetes. Conversely, overexpression of Pdia4 had the opposite pathophysiological outcomes in the mice. In addition, Pdia4 positively regulated ß-cell death, dysfunction, and ROS production. Mechanistic studies demonstrated that Pdia4 increased ROS content in ß-cells via its action on the pathway of Ndufs3 and p22phox . Finally, we found that 2-ß-D-glucopyranosyloxy1-hydroxytrideca 5,7,9,11-tetrayne (GHTT), a Pdia4 inhibitor, suppressed diabetic development in diabetic mice. These findings characterize Pdia4 as a crucial regulator of ß-cell pathogenesis and diabetes, suggesting Pdia4 is a novel therapeutic and diagnostic target of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Glucemia , Diabetes Mellitus Experimental/terapia , Ratones , Proteína Disulfuro Isomerasas , Especies Reactivas de Oxígeno
14.
Front Endocrinol (Lausanne) ; 12: 641336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995275

RESUMEN

Reliable protein markers for pre-diabetes in humans are not clinically available. In order to identify novel and reliable protein markers for pre-diabetes in humans, healthy volunteers and patients diagnosed with pre-diabetes and stroke were recruited for blood collection. Blood samples were collected from healthy and pre-diabetic subjects 12 h after fasting. BMI was calculated from body weight and height. Fasting blood glucose (FBG), glycated hemoglobin (HbA1C), triglyceride (TG), total cholesterol, high-density lipoprotein, low-density lipoprotein (LDL), insulin and albumin were assayed by automated clinical laboratory methods. We used a quantitative proteomics approach to identify 1074 proteins from the sera of pre-diabetic and healthy subjects. Among them, 500 proteins were then selected using Mascot analysis scores. Further, 70 out of 500 proteins were selected via volcano plot analysis according to their statistical significance and average relative protein ratio. Eventually, 7 serum proteins were singled out as candidate markers for pre-diabetes due to their diabetic relevance and statistical significance. Immunoblotting data demonstrated that laminin subunit alpha 2 (LAMA2), mixed-lineage leukemia 4 (MLL4), and plexin domain containing 2 (PLXDC2) were expressed in pre-diabetic patients but not healthy volunteers. Receiver operating characteristic curve analysis indicated that the combination of the three proteins has greater diagnostic efficacy than any individual protein. Thus, LAMA2, MLL4 and PLXDC2 are novel and reliable serum protein markers for pre-diabetic diagnosis in humans.


Asunto(s)
Biomarcadores/sangre , Diabetes Mellitus Tipo 2/sangre , Estado Prediabético/sangre , Adulto , Anciano , Anciano de 80 o más Años , Glucemia/análisis , Índice de Masa Corporal , Cationes , Colesterol/metabolismo , Cromatografía por Intercambio Iónico , Técnicas Químicas Combinatorias , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Hemoglobina Glucada/biosíntesis , Humanos , Insulina/sangre , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Proteómica , Sensibilidad y Especificidad , Triglicéridos/metabolismo , Adulto Joven
15.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925600

RESUMEN

Neurons that have been derived from various types of stem cells have recently undergone significant study due to their potential for use in various aspects of biomedicine. In particular, glutamatergic neurons differentiated from embryonic stem cells (ESCs) potentially have many applications in both basic research and regenerative medicine. This review summarized the literatures published thus far and focused on two areas related to these applications. Firstly, these neurons can be used to investigate neuronal signal transduction during differentiation and this means that the genes/proteins/markers involved in this process can be identified. In this way, the dynamic spatial and temporal changes associated with neuronal morphology can be investigated relatively easily. Such an in vitro system can also be used to study how neurons during neurogenesis integrate into normal tissue. At the same time, the integration, regulation and functions of extracellular matrix secretion, various molecular interactions, various ion channels, the neuronal microenvironment, etc., can be easily traced. Secondly, the disease-related aspects of ESC-derived glutamatergic neurons can also be studied and then applied therapeutically. In the future, greater efforts are needed to explore how ESC-differentiated glutamatergic neurons can be used as a neuronal model for the study of Alzheimer's disease (AD) mechanistically, to identify possible therapeutic strategies for treating AD, including tissue replacement, and to screen for drugs that can be used to treat AD patients. With all of the modern technology that is available, translational medicine should begin to benefit patients soon.


Asunto(s)
Diferenciación Celular/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/terapia , Animales , Línea Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Humanos , Neurogénesis/fisiología , Transducción de Señal/fisiología
16.
Food Chem ; 333: 127458, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32673952

RESUMEN

Artemisia species are aromatic herbs used as food and/or ethnomedicine worldwide; however, the use of these plants is often impeded by misidentification. Here, molecular and chemotaxonomic approaches were combined to assist in the morphology-based authentication of Artemisia species, and Artemisia indica and Artemisia argyi were identified. The plant extracts and compounds obtained from these species, 1,8-cineole, carveol, α-elemene, α-farnesene, methyl linolenate, diisooctyl phthalate inhibited the growth of food-borne harmful bacteria. Mechanistic studies showed that the extract and active compounds of A. indica killed Gram-negative and -positive bacteria via destruction of the bacterial membrane. Finally, in vivo data demonstrated that A. indica protected against bacterial infection in mice as evidenced by survival rate, bacterial load in organs, gut pathology, diarrhea, body weight, food consumption, stool weight, and pathology score. A. indica and its active compounds have potential for use as food supplements for food-borne bacterial diseases and thus improve human health.


Asunto(s)
Antibacterianos/farmacología , Artemisia/química , Fitoquímicos/análisis , Extractos Vegetales/farmacología , Animales , Antibacterianos/química , Carga Bacteriana , Diarrea/tratamiento farmacológico , Diarrea/microbiología , Femenino , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plantas Medicinales/química , Intoxicación Alimentaria por Salmonella/tratamiento farmacológico , Intoxicación Alimentaria por Salmonella/mortalidad , Taiwán
17.
J Tradit Complement Med ; 10(2): 150-157, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32257878

RESUMEN

Bidens pilosa (BP) is an edible Asteraceae plant found worldwide that has traditionally been used as food without noticeable side effects. BP has also been used as an herbal medicine to treat over 41 categories of disease in humans and animals. However, to date no long-term toxicity study of BP has been conducted in animals. In this study, 24-week oral toxicity of BP at doses of 0%, 0.5%, 2.5%, 5% and 10% of food was investigated in mice. Mortality, body weight, organ weight, food intake, water consumption, hematology, serum biochemistry, urinalysis, genotoxicity and organ histopathology of animals of both sexes were analyzed. No significant difference in the above parameters was observed between control and BP-fed mice except that body weight and food intake in those fed with 10% BP were significantly less than controls. In addition, similar results were seen in chickens fed with BP for 28 days. Collectively, the data demonstrate that BP has no adverse effects in mice and chickens at dose of 5% or less of food.

18.
Pharmacol Res ; 156: 104754, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173584

RESUMEN

Type 1 diabetes (T1D) is a lethal autoimmune disease afflicting as many as 10 million people worldwide. Considerable advances have been made in early diagnosis and understanding the cause of T1D development. However, new remedies are still in great demand as TID remains an incurable disease. Natural products, primarily phytochemicals, are an extraordinary source of discovery of drug leads for diabetes. This review covers recent findings regarding plant compounds and extracts for T1D based on a literature search of articles published between 2004-2019 in PubMed, Reaxyx, and America/European patent databases. Over this period more than 90 plant compounds and extracts were reported to have beneficial effects on T1D via multiple mechanisms involving the regulation of immunity and/or ß cells. In this review, we focus on recent progress in the understanding of the chemistry (chemical structure and plant source), anti-diabetic bioactivities, and likely mechanisms of action of plant compounds for T1D. Mechanistic studies are summarized, which indicate that flavonoids, terpenoids, and anthranoids can inhibit starch-digesting enzymes, aldose reductase, MAP kinases, NFκB, and/or IκB kinases implicated in energy metabolism, ß-cells, and immunity. Furthermore, human clinical trials centering on flavonoids, isoflavonoids, terpenoids, stilbenoids, and polyynes are discussed, and an overview of emerging anti-diabetic strategies using plant compounds and extracts for applications in T1D prophylaxis and therapy is also provided.


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Células Secretoras de Insulina/efectos de los fármacos , Fitoquímicos/uso terapéutico , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Modelos Animales de Enfermedad , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/química , Factores Inmunológicos/efectos adversos , Inmunoterapia/efectos adversos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Estructura Molecular , Fitoquímicos/efectos adversos , Fitoquímicos/química , Relación Estructura-Actividad , Resultado del Tratamiento
19.
Sci Rep ; 9(1): 2896, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814608

RESUMEN

Avian coccidiosis is an economically important disease in the poultry industry. In view of the disadvantages of anti-coccidial drugs in chickens, edible plants and their compounds are re-emerging as an alternative strategy to combat this disease. A previous publication reported that the edible plant B. pilosa showed promise for use against coccidiosis. Here, we first investigated into the anti-coccidial effects of B. pilosa. We found that B. pilosa at 100 ppm or more significantly suppressed E. tenella as evidenced by reduction in mortality rate, oocyst excretion and gut pathological severity in chickens and its minimum prophylactic duration was 3 days. Next, we explored the mode of action of anti-coccidial mechanism of B. pilosa. The E. tenella oocysts were not directly killed by B. pilosa; however, administration of the plant suppressed oocyst sporulation, sporozoite invasion, and schizonts in the life cycle of E. tenella. Besides, B. pilosa boosted T cell-mediated immunity. Finally, we characterized the related anti-coccidial phytochemicals and their mode of action. One of three potent polyynes present in B. pilsoa, Compound 1 (cytopiloyne), acted against coccidiosis in chickens in a similar manner to B. pilosa. These data illustrate the anti-coccidial potency and mechanism of B. pilosa and one of its active compounds, and provide a cornerstone for development of novel herbal remedies for avian coccidiosis.


Asunto(s)
Bidens/química , Pollos/inmunología , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria , Eimeria tenella/efectos de los fármacos , Extractos Vegetales/farmacología , Enfermedades de las Aves de Corral/prevención & control , Animales , Pollos/crecimiento & desarrollo , Pollos/parasitología , Coccidiosis/parasitología , Eimeria tenella/inmunología , Femenino , Oocistos/efectos de los fármacos , Enfermedades de las Aves de Corral/parasitología
20.
J Agric Food Chem ; 67(1): 81-89, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30541279

RESUMEN

Utilizing the N-methyl-d-aspartate (NMDA) receptor antagonist as a strategy, memantine is the only agent available for clinically treating mild to severe Alzheimer's disease (AD). Our aim was to develop novel similar herb-based drugs. Using a screening platform, ginkgolide A (GA), a pure compound extracted from Ginkgo biloba, was found to attenuate amyloid ß (Aß)-induced abnormal depolarization in mouse primary cortical neurons. Using receptor agonists, it was determined that GA inhibits both NMDA receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Furthermore, the Aß-induced increase in c-Jun N-terminal kinase phosphorylation in neurons was prevented by GA. Body weight, glutamate oxaloacetate transaminase, glutamic-pyruvic transaminase, liver histology, and kidney histology were similar when the wild-type/AD animal model mice with and without GA treatment were compared. This pure compound improves the memory of wild-type mice. Our findings indicate that GA has great potential clinically for the treatment of AD because it might target NMDA receptors just like memantine.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/toxicidad , Corteza Cerebral/efectos de los fármacos , Ginkgo biloba/química , Ginkgólidos/administración & dosificación , Lactonas/administración & dosificación , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/administración & dosificación , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA