Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Phys Chem Chem Phys ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38780318

In this study, we proposed a bifunctional sensor of high sensitivity and slow light based on carbon nanotubes (CNTs). An array of left semicircular ring (LSR), right semicircular ring (RSR), and circular ring (CR) resonators are utilized to form the proposed metamaterial. The proposed structure can achieve double plasmon-induced transparency (PIT) effects under the excitation of a TM-polarization wave. The double PIT originated from the destructive interference between two bright modes and a dark mode. A coupled harmonic oscillator model is used to describe the destructive interference between the two bright modes and a dark mode, and the simulation results agree well with the calculated results. Moreover, we investigate the influence of the coupling distance, period, and flare angle on the PIT spectra. The relationship between the resonant frequencies, full width at half maximum (FWHM), amplitudes, quality factors (Q), and the coupling distance is also studied. Finally, a high sensitivity of 1.02 THz RIU-1 is obtained, and the transmission performance can be maintained at a good level when the incident angle is less than 40°. Thus, the sensor can cope with situations where electromagnetic waves are not perpendicular to the structure's surface. The maximum figure of merit (FOM) can reach about 8.26 RIU-1; to verify the slow light property of the device, the slow light performance of the proposed structure is investigated, and a maximum time delay (TD) of 22.26 ps is obtained. The proposed CNT-based metamaterial can be used in electromagnetically induced transparency applications, such as sensors, optical memory devices, and flexible terahertz functional devices.

2.
Front Biosci (Landmark Ed) ; 29(4): 134, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38682180

BACKGROUND: Immune escape is a key factor influencing survival rate of lung adenocarcinoma (LUAD) patients, but molecular mechanism of ubiquitin binding enzyme E2T (UBE2T) affecting immune escape of LUAD remains unclear. The objective was to probe role of UBE2T in LUAD. METHODS: Bioinformatics means were adopted for analyzing UBE2T and forkhead box A1 (FOXA1) expression in LUAD tissues, the gene binding sites, the pathway UBE2T regulates, and the correlation between UBE2T and glycolysis genes. Dual luciferase and chromatin immunoprecipitation (ChIP) assays were conducted for validating the binding relationship between the two genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to evaluate UBE2T, FOXA1, and programmed death ligand 1 (PD-L1) levels in cancer cells. MTT assay was conducted for detecting cell viability. Cytotoxicity assay detected CD8+T cell toxicity. Cytokine expression was assayed by enzyme linked immunosorbent assay (ELISA). Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were assayed by extracellular flow analyzer. Glycolytic gene expression was analyzed by qRT-PCR, and glycolysis-related indicators were detected by ELISA. Immunohistochemistry (IHC) detected CD8+T cell infiltration in tumor tissues. RESULTS: FOXA1 and UBE2T were up-regulated in LUAD, and a binding site existed between UBE2T and FOXA1. Overexpressing UBE2T could increase PD-L1 expression and inhibit toxicity of CD8+T cells to LUAD cells. Overexpressing UBE2T repressed CD8+T cell activity in LUAD by activating the glycolysis pathway, and the addition of glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed the above results. Mechanistically, FOXA1 promoted the immune escape of LUAD by up-regulating UBE2T and thus mediating glycolysis. In vivo experiments revealed that UBE2T knockdown hindered tumor growth, inhibited PD-L1 expression, and facilitated CD8+T cell infiltration. CONCLUSION: FOXA1 up-regulated the expression of UBE2T, which activated glycolysis, and thus inhibited activity of CD8+T cells, causing immune escape of LUAD.


Adenocarcinoma of Lung , CD8-Positive T-Lymphocytes , Glycolysis , Hepatocyte Nuclear Factor 3-alpha , Lung Neoplasms , Ubiquitin-Conjugating Enzymes , Humans , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Mice , Mice, Nude , Tumor Escape/genetics , Female , Male
3.
Phys Chem Chem Phys ; 26(17): 13209-13218, 2024 May 01.
Article En | MEDLINE | ID: mdl-38630493

In this paper, we propose a borophene-based grating structure (BBGS) to realize multi-band plasmon-induced absorption. The coupling of two resonance modes excited by upper borophene grating (UBG) and lower borophene grating (LBG) leads to plasmon-induced absorption. The coupled-mode theory (CMT) is utilized to fit the absorption spectrum. The simulated spectrum fits well with the calculated result. We found the absorption peaks exhibit a blue shift with an increase in the carrier density of borophene grating. Further, as the coupling distance D increases, the first absorption peak shows a blue shift, while the second absorption peak exhibits a red shift, leading to a smaller reflection window. Moreover, the enhancement absorption effect caused by the bottom PEC layer is also analyzed. On this basis, using a three-layer borophene grating structure, we designed a three-band perfect absorber with intensities of 99.83%, 99.45%, and 99.96% in the near-infrared region. The effect of polarization angle and relaxation time on the absorption spectra is studied in detail. Although several plasmon-induced absorption based on two-dimensional (2D) materials, such as graphene, black phosphorus, and transition metal dichalcogenides (TMDs), have been previously reported, this paper proposes a borophene-based metamaterial to achieve plasmon-induced perfect absorption since borophene has some advantages such as high surface-to-volume ratios, mechanical compliance, high carrier mobility, excellent flexibility, and long-term stability. Therefore, the proposed borophene-based metamaterial will be beneficial in the fields of multi-band perfect absorber in the near future.

4.
Toxicol Lett ; 394: 11-22, 2024 Apr.
Article En | MEDLINE | ID: mdl-38387762

BACKGROUND: The incidence of endocrine-related cancer, which includes tumors in major endocrine glands such as the breast, thyroid, pituitary, and prostate, has been increasing year by year. Various studies have indicated that brominated flame retardants (BFRs) are neurotoxic, endocrine-toxic, reproductive-toxic, and even carcinogenic. However, the epidemiological relationship between BFR exposure and endocrine-related cancer risk remains unclear. METHODS: We searched the PubMed, Google Scholar, and Web of Science databases for articles evaluating the association between BFR exposure and endocrine-related cancer risk. The odds ratio (OR) and its corresponding 95% confidence interval (95% CI) were used to assess the association. Statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. Begg's test was performed to evaluate the publication bias. RESULTS: We collected 15 studies, including 6 nested case-control and 9 case-control studies, with 3468 cases and 4187 controls. These studies assessed the risk of breast cancer, thyroid cancer, and endocrine-related cancers in relation to BFR levels. Our findings indicate a significant association between BFR exposure in adipose tissue and an increased risk of breast cancer. However, this association was not observed for thyroid cancer. Generally, BFR exposure appears to elevate the risk of endocrine-related cancers, with a notable increase in risk linked to higher levels of BDE-28, a specific polybrominated diphenyl ether congener. CONCLUSIONS: In conclusion, although this meta-analysis has several limitations, our results suggest that BFR exposure is a significant risk factor for breast cancer, and low-brominated BDE-28 exposure could significantly increase the risk of endocrine-related cancers. Further research is essential to clarify the potential causal relationships between BFRs and endocrine-related cancers, and their carcinogenic mechanisms.


Breast Neoplasms , Flame Retardants , Hydrocarbons, Brominated , Polybrominated Biphenyls , Male , Humans , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Risk Factors , Hydrocarbons, Brominated/toxicity
5.
J Am Chem Soc ; 146(6): 4242-4251, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38300828

Understanding the reconstruction of electrocatalysts under operational conditions is essential for studying their catalytic mechanisms and industrial applications. Herein, using spatiotemporally resolved Raman spectroscopy with CO as a probe molecule, we resolved the spontaneous reconstruction of Cu active sites during cathodic CO reduction reactions (CORRs). Quasi-in situ focused ion beam transmission electron microscopy (FIB-TEM) revealed that under prolonged electrolysis, the Cu surface can reconstruct to form nanometer-sized Cu particles with (111)/(100) facets and abundant grain boundaries, which strongly favor the formation of an inactive *CObridge binding site and deteriorate the CORR performance. A short period of anodic oxidation can efficiently remove these reconstructed nanoparticles by quick dissolution of Cu, thus providing an effective strategy to regenerate the Cu catalysts and recover their CORR performance. This study provides real-time in situ observations of Cu reconstruction and changes in the binding of key reaction intermediates, highlighting the decisive role of the local active site, rather than the macroscopic morphology, on adsorption of key reaction intermediates and thus CORR performance.

7.
Ecotoxicol Environ Saf ; 270: 115925, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38183752

Disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), have attracted attention due to their carcinogenic properties, leading to varying conclusions. This meta-analysis aimed to evaluate the dose-response relationship and the dose-dependent effect of DBPs on cancer risk. We performed a selective search in PubMed, Web of Science, and Embase databases for articles published up to September 15th, 2023. Our meta-analysis eventually included 25 articles, encompassing 8 cohort studies with 6038,525 participants and 10,668 cases, and 17 case-control studies with 10,847 cases and 20,702 controls. We observed a positive correlation between increased cancer risk and higher concentrations of total trihalomethanes (TTHM) in water, longer exposure durations, and higher cumulative TTHM intake. These associations showed a linear trend, with relative risks (RRs) and 95 % confidence intervals (CIs) being 1.02 (1.01-1.03), 1.04 (1.02-1.06), and 1.02 (1.00-1.03), respectively. Gender-specific analyses revealed slightly U-shaped relationships in both males and females, with males exhibiting higher risks. The threshold dose for TTHM in relation to cancer risk was determined to be 55 µg/L for females and 40 µg/L for males. A linear association was also identified between bladder cancer risk and TTHM exposure, with an RR and 95 % CI of 1.08 (1.05-1.11). Positive linear associations were observed between cancer risk and exposure to chloroform, bromodichloromethane (BDCM), and HAA5, with RRs and 95 % CIs of 1.02 (1.01-1.03), 1.33 (1.18-1.50), and 1.07 (1.03-1.12), respectively. Positive dose-dependent effects were noted for brominated THMs above 35 µg/L and chloroform above 75 µg/L. While heterogeneity was observed in the studies for quantitative synthesis, no publication bias was detected. Exposure to TTHM, chloroform, BDCM, or HAA5 may contribute to carcinogenesis, and the risk of cancer appears to be dose-dependent on DBP exposure levels. A cumulative effect is suggested by the positive correlation between TTHM exposure and cancer risk. Bladder cancer and endocrine-related cancers show dose-dependent and positive associations with TTHM exposure. Males may be more susceptible to TTHM compared to females.


Disinfectants , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Male , Female , Humans , Disinfection , Chloroform/analysis , Trihalomethanes/toxicity , Trihalomethanes/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfectants/toxicity
8.
Phys Chem Chem Phys ; 26(5): 4597-4606, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38250817

We proposed a triple-band narrowband device based on a metal-insulator-metal (MIM) structure in visible and near-infrared regions. The finite difference time domain (FDTD) simulated results illustrated that the absorber possessed three perfect absorption peaks under TM polarization, and the absorption efficiencies were about 99.76%, 99.99%, and 99.92% at 785 nm, 975 nm, and 1132 nm, respectively. Simulation results matched well with the results of coupled-mode theory (CMT). Analyses of the distributions of the electric field indicated the "perfect" absorption was due to localized surface plasmon polaritons resonance (LSPPR) and Fabry-Perot resonance. We developed a multi-band absorber with more ellipsoid pillars. The four band-absorbing device presented perfect absorption at 767 nm, 1046 nm, 1122 nm, and 1303 nm, and the absorption rates were 99.45%, 99.41%, 99.99%, and 99.94%, respectively. By changing the refractive index of the surrounding medium, the resonant wavelengths could be tuned linearly. The maximum sensitivity and Figure of Merit were 230 nm RIU-1 and 10.84 RIU-1, respectively. The elliptical structural design provides more tuning degrees of freedom. The absorber possessed several satisfactory performances: excellent absorption behavior, multiple bands, tunability, incident insensitivity, and simple structure. Therefore, the designed absorbing device has enormous potential in optoelectronic detection, optical switching, and imaging.

10.
Chemphyschem ; 25(3): e202300599, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38012079

Two-step deposition method has been widely exploited to fabricate FA1-x Csx PbI3 perovskite solar cells. However, in previous studies, CsI is mainly added into the PbI2 precursor with DMF/DMSO as solvent. Here in this study, a novel method to fabricate FA1-x Csx PbI3 perovskite has been proposed. The CsI is simultaneously added into the PbI2 precursor and the organic FAI/MACl salts solution in our modified two-step deposition process. The resulting FA1-x Csx PbI3 film exhibits larger perovskite crystals and suppressed defect density (4.05×1015  cm-3 ) compared with the reference perovskite film (9.23×1015  cm-3 ) without CsI. Therefore, the obtained FA1-x Csx PbI3 perovskite solar cells have demonstrated superior power conversion efficiencies (PCE=21.96 %) together with better long-term device stability.

11.
Front Oncol ; 13: 1279045, 2023.
Article En | MEDLINE | ID: mdl-38090500

Aumolertinib, as a novel third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has been widely employed as a first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation. However, reports regarding the benefit of using aumolertinib as a monotherapy in pulmonary giant cell carcinoma are relatively scarce. In this report, we present a pulmonary giant cell carcinoma case harboring the EGFR Leu858Arg (L858R) mutation, with the patient at stage cT2bN3M1c IVB. Through the use of autolearning as a single agent, we effectively controlled the progression of pulmonary giant cell carcinoma, achieving a 6-month progression-free survival during the treatment course. Notably, the patient's tumor not only ceased its growth but also continued to shrink, highlighting a significant therapeutic effect. This case reveals the effectiveness of aumolertinib as a monotherapy in controlling disease progression. The finding underscores the therapeutic advantage of aumolertinib in this particular subgroup of patients, offering a novel treatment option for pulmonary giant cell carcinoma.

12.
Int Heart J ; 64(6): 1079-1087, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37967990

Perfluoroalkyl and polyfluoroalkyl substance (PFAS) is a large group of fluorinated synthetic chemicals, e.g., perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorodecanoic acid (PFDA), and perfluorononanoic acid (PFNA). Many epidemiological studies have found that PFAS exposure is associated with hypertension risk, but others possess a different opinion. Overall, the relationship between PFASs and hypertension risk remains controversial. We sought to conduct a systematic review and meta-analysis to clarify the association between PFAS exposure and human risk of hypertension.We conducted a meta-analysis based on population-involving studies published from 1975 to 2023, which we collected from Web of Science, PubMed, and Embase databases. The odds ratio (OR) and standardized mean difference (SMD), with their 95% confidence interval (CI), were used to assess the risk of hypertension with PFAS exposure. The statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. Research publications related to our meta-analysis topic were systematically reviewed.Fourteen studies involving 71,663 participants, in which 26,281 suffered hypertension, met the inclusion criteria. Our analyses suggest that exposure to general PFAS (OR = 1.09, 95% CI = 1.04-1.14) or PFOS (OR = 1.17, 95% CI = 1.05-1.30) is associated with hypertension risk. Specifically, elevated levels of general PFAS (SMD = 0.25, 95% CI = 0.08-0.42), PFHxS (SMD = 0.17, 95% CI = 0.07-0.27), and PFDA (SMD = 0.08, 95% CI = 0.02-0.13) are associated with a high risk of hypertension.Our meta-analysis indicates that PFAS exposure is a risk factor for hypertension, and increased hypertension risk is associated with higher PFAS levels. Further study may eventually provide a better and more comprehensive elucidation of the potential mechanism of this association.


Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Alkanesulfonic Acids/adverse effects , Fluorocarbons/adverse effects
13.
Front Psychol ; 14: 1271911, 2023.
Article En | MEDLINE | ID: mdl-37965670

Conceptual metaphors are essential for explaining and understanding social concerns. Natural disaster metaphors are commonly employed to access the abstract and negative impacts of social issues. Five of the top 10 most prevalent natural disaster frames in the Center for Chinese Linguistics (CCL)-earthquake, flood, fire hazard, drought, typhoon, landslide, volcano, sandstorm, tsunami, and debris flow-share a common economic target domain and show economic recession. Additionally, corpus-based research has revealed that the landslide frame is the most salient in figuratively representing economic declines. An experimental study derived from the corpus analysis has found that the landslide-framed economic crises posed more severity to participants and exerted a notable influence on their opinions and judgments. Therefore, when effective communication of economic hazards is to be realized, metaphorical representation of economic crises demands great consideration.

14.
J Opt Soc Am A Opt Image Sci Vis ; 40(10): 1873-1881, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37855543

The self-healing properties of symmetrical power-exponent-phase vortices (SPEPVs) are analyzed in this paper. By placing an obstacle in the optical path of SPEPVs, we simulated the propagation of the obstructed SPEPVs and verified the self-healing of the beam theoretically. We also explored the influence of external factors (e.g., obstacle size and position) and internal parameters (topological charge l and power exponent n) on the self-healing effect of obstructed SPEPVs. Furthermore, the energy flow density, similarity coefficient, effective self-healing distance, and diffraction efficiency of the obstructed SPEPVs were also discussed. The results demonstrated that the transverse energy flows around the obstructed region of SPEPVs will recover with the propagation distance increased, and the effective self-healing distance gradually increases linearly with the obstacle size r x increased. The self-healing characteristic gives the petal-like SPEPVs the ability to trap microparticles three-dimensionally.

15.
Phys Chem Chem Phys ; 25(40): 27586-27594, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37807903

In this paper, we proposed an ultra-broadband and high absorption rate absorber based on Fe materials. The proposed absorber consists of a rectangle pillar, two rings, a SiO2 film, a Ge2Sb2Te5(GST) planar cavity, an Fe mirror, and a SiO2 substrate. The average absorption reaches 98.45% in the range of 400-4597 nm. We investigate and analyze the electric field distributions. The analysis of the physical mechanism behind the broadband absorption effect reveals that it is driven by excited surface plasmons. Furthermore, the absorber can maintain high absorption efficiency under a large incident angle. The geometrical symmetric structure possesses polarization insensitivity properties. The proposed structure allows for certain manufacturing errors, which improves the feasibility of the actual manufacture. Then, we investigate the effect of different materials on absorption. Finally, we study the matching degree between the energy absorption spectrum and the standard solar spectrum under AM 1.5. The results reveal that the energy absorption spectrum matches well with the standard solar spectrum under AM 1.5 over the full range of 400 to 6000 nm. In contrast, energy loss can be negligible. The absorber possesses ultra-broadband perfect absorption, a high absorption rate, and a simple structure which is easy to manufacture. It has tremendous application potential in many areas, such as solar energy capture, thermal photovoltaics, terminal imaging, and other optoelectronic devices.

16.
J Opt Soc Am A Opt Image Sci Vis ; 40(9): 1706-1713, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37707007

In this paper, we generate a type of double helico-conical beam (HCB) by binarizing the modified helico-conical phase (MHCP). The diffraction patterns of the double HCBs were analyzed theoretically and experimentally. The relative position of the double HCBs can be adjusted arbitrarily by introducing a blazed grating only. In addition, the superposition of multiple binary MHCPs can be used to generate multi-helix beams. Accordingly, the diffraction patterns of the multi-helix beams were also analyzed theoretically and experimentally. The results demonstrated that the number and relative position of multi-helix beams can be adjusted by the number of superimposed MHCP profiles and the azimuth factor θ j, respectively. This kind of arrayed HCB will be potentially applied in the fields of optical manipulation and multiplexed holography.

17.
Chempluschem ; 88(10): e202300367, 2023 Oct.
Article En | MEDLINE | ID: mdl-37724441

Solution processed perovskite films usually exhibit numerous defect states on the surfaces of the films. Here in this work, oxalic acid (H2 C2 O4 ), which has two C=O groups, is selected and used to passivate the surface defects of the two-step deposited perovskite films via post-treatment. Strong interaction between H2 C2 O4 molecule and the Pb2+ ions located on the surface of perovskite film has been confirmed via Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, which can result in an effective suppress of the surface defects. Furthermore, time-resolved PL spectrum indicates that carrier lifetime is prolonged in the H2 C2 O4 passivated perovskite film. After optimizing the H2 C2 O4 concentration, the target perovskite solar cells can demonstrate superior power conversion efficiencies (21.67 % from reverse measurement and 21.54 % from forward measurement) and superior device-stability.

18.
J Chem Phys ; 159(10)2023 Sep 14.
Article En | MEDLINE | ID: mdl-37698197

Colloidal quantum confined semiconductor-metal heterostructures are promising candidates for solar energy conversion because their light absorbing semiconductor and catalytic components can be independently tuned and optimized. Although the light-to-hydrogen efficiencies of such systems have shown interesting dependences on the morphologies of the semiconductor and metal domains, the mechanisms of such dependences are poorly understood. Here, we use Pt tipped 0D CdS quantum dots (with ∼4.6 nm diameter) and 1D CdS nanorods (of ∼13.8, 27.8, 66.6, and 88.9 nm average rod lengths) as a model system to study the distance-dependence of charge separation and charge recombination times and their impacts on photo-driven H2 production. The H2 generation quantum efficiency increases from 0.2% ± 0.0% in quantum dots to 28.9% ± 0.4% at a rod length of 28 nm and shows negligible changes at longer rod lengths. The half-life time of electron transfer from CdS to Pt increases monotonically with rod length, from 0.7 ± 0.1 in quantum dots to 170.2 ± 29.5 ps in the longest rods, corresponding to a slight decrease in electron transfer quantum efficiency from 92% to 81%. The amplitude-weighted average lifetime of charge recombination of the electron in Pt with the hole in CdS increases from 4.7 ± 0.4 µs in quantum dots to 149 ± 34 µs in 28 nm nanorods, and the lifetime does not increase further in longer rods, resembling the trend in the observed H2 generation quantum efficiency. Our result suggests that the competition of the charge recombination process with the hole removal by the sacrificial electron donor plays a dominant role in the observed nanorod length dependent overall light driven H2 generation quantum efficiency.

19.
J Am Chem Soc ; 145(37): 20655-20664, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37639564

Developing alternative electrolysis techniques is crucial for advancing electrocatalysis in addition to tremendous efforts of material developments. Recently, pulse electrochemical CO2 reduction reaction (CO2RR) has demonstrated dramatic selectivity improvement toward multicarbon (C2+) products compared to potentiostatic electrochemical CO2RR, yet the underlying mechanisms remain little understood. Herein, we develop a fast time-resolved in situ Raman spectroscopic method with a time resolution of 0.25 s. We reveal that pulse electrolysis improves the C2+ selectivity of CO2RR through dynamic controls of the surface CuxO/Cu composition that would be unachievable under potentiostatic electrolysis. The population of the surface-adsorbed CO intermediate (COads) is characterized to be the determining factor in controlling reaction selectivity, which depicts the C2+/C1 selectivity of CO2RR under pulse conditions. Meanwhile, the vibrational character of COads, despite transforming dynamically between the low-frequency and high-frequency modes is characterized not to be the key factor in controlling the reaction selectivity. Such an active control of catalyst surface compositions and reaction intermediates enabled by pulse electrolysis offer a general way of regulating the electrocatalysis performance of broad electrochemical reactions beyond CO2RR.

20.
Phys Chem Chem Phys ; 25(35): 23855-23866, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37641967

In this paper, a TM polarization multi-band absorber is achieved in a graphene-Ag asymmetrical grating structure. The proposed absorber can achieve perfect absorption at 1108 nm, 1254 nm, and 1712 nm (the absorption exceeds 98.4% at the three peaks). Results show that the perfect absorption effect originates from the excitation of magnetic polaritons (MPs) in the silver ridge grating; a LC equivalent circuit model is utilized to confirm the finite-difference-time-domain (FDTD) simulation. The influences of the incident angle, polarization angle, and geometrical size on the absorption spectrum are investigated. Moreover, a quadruple band absorber and a quintuple band absorber are also designed by introducing more silver grating ridges in one period. The proposed graphene-Ag asymmetrical structure has some advantages compared with other absorbers such as the ability to be independently tuned and a simple structure. Thus, the proposed structure can be applied in the areas of multiple absorption switches, near-infrared modulators, and sensors.

...