Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123803, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38159382

Luminescent coordination polymers (LCPs) have garnered significant attention from researchers as promising materials for detecting contaminants. In this paper, three new LCPs ([Zn(tib)(opda)]n⋅H2O (1), [Zn3(tib)2(mpda)3]n⋅5H2O (2), [Zn (tib)(ppda)]n⋅H2O (3)) with different structures (LCP 1-3: 1D, 2D, 1D) using phenylenediacetic acid isomers and 1,3,5-tris (1-imidazolyl) benzene (tib) are synthesized. The specific surface areas (BET) of LCP 1-3 are 4 m2/g, 19 m2/g, and 13 m2/g respectively. LCP 1-3 exhibit excellent fluorescence properties and can serve as fluorescent probe for the detection of inorganic contaminants and organic contaminants. Due to the large BET of LCP 2, the detection limits for trace analytes surpass those of LCP 1 and 3. The detection limits of LCP 2 for Fe3+, nitrobenzene (NB), chloramphenicol (CAP), and pyrimethanil (PTH) are 8.3 nM, 0.016 µM, 0.19 µM, and 0.032 µM, respectively, and the fluorescence quenching rates are 98.6 %, 98.8 %, 92.3 %, and 98.8 %, respectively. These values outperform most reported in the literature. The quantum yields of LCP 1-3 are 11.84 %, 25.22 %, 22.00 % respectively. Real sample testing of LCP 1-3 reveals favorable performance, where spiked recoveries of LCP 2 for the detection of pyrimethanil in grape skins ranged from 99.62 % to 119.3 % with a relative standard deviation (RSD) of 0.627 % to 4.56 % (n = 3). The fluorescence quenching mechanism was attributed to a combination of photoelectron transfer (PET), resonance energy transfer (RET), and competitive absorption (CA). This study advances the application of LCPs in luminescence sensing and contributes to the expansion of novel materials for detecting environmental pollutants.

2.
Inorg Chem ; 62(48): 19389-19394, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38044829

Single component white-light-emitting (SCWLE) materials are extremely desired in the field of solid-state lighting. However, pure-phosphorescent SCWLE has rarely been reported. Herein, one halogen-bonding-containing MOF [Cd(5-BIPA)(phen)] (1) has been synthesized, which shows efficient white-light emission originating from dual phosphorescence bands with different wavelengths and lifetimes. The fabrication of a phosphor-converted white-light-emitting diode device driven by pulsing current enables this MOF to be a promising phosphor.

3.
Phys Chem Chem Phys ; 25(37): 25139-25145, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37706361

A broad light-harvesting range and efficient charge separation are two main ways to enhance the visible photocatalytic performance of semiconductors. Herein, an ionic porphyrin MOF [In(TPyP)]·(NO3) (1) (TPyP = 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin) was synthesized via in situ metalation. The orderly arranged porphyrin photosensitizer and the internal electric field between the MOF host and NO3- guests enable effective visible light response and electron-hole separation. Consequently, the as-synthesized MOF shows efficient photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) organic pollutants. It can degrade 99.07% of RhB within only 20 minutes under visible light irradiation (λ > 420 nm) with a high chemical reaction rate constant of 0.2400 min-1. The photocatalytic activity of the title MOF is more efficient than those of other reported MOFs, COFs and even inorganic semiconductors. The reusability, energy level, band gap, charge distribution and main degradation mechanisms of the photocatalyst were well studied.

4.
Dalton Trans ; 52(39): 13872-13877, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37772935

Lanthanide metal-organic framework (Ln-MOF) based phosphors for light-emitting diodes (LEDs) play an important role in the fields of solid-state lighting and display. The rational design of organic antennae to address the drawback of low extinction coefficients of the lanthanide ions is highly desired. In this work, we provide a new design strategy to achieve an energy transfer molecule with a through-space conjugated folded structure, which can strengthen the skeleton rigidity and facilitate triplet state energy transfer. Consequently, one U-type π-conjugated molecule 2,6-bis(3,5-dicarboxylphenoxy) pyridine (H4L) was selected as a light gatherer to sensitize lanthanide ions for the construction of Ln-MOFs [Ln(HL)(H2O)3]n (Eu-MOF and Tb-MOF), which exhibit a long-lived luminescence lifetime (0.88 ms for Eu-MOF and 1.31 ms for Tb-MOF) and high quantum yields (50.87% for Eu-MOF and 85.64% for Tb-MOF). Furthermore, a white LED device with a colour rendering index (89) was fabricated using the mixture of Ln-MOFs with a commercial blue phosphor.

5.
Angew Chem Int Ed Engl ; 62(7): e202216699, 2023 02 06.
Article En | MEDLINE | ID: mdl-36536412

The development of efficient enzyme immobilization to promote their recyclability and activity is highly desirable. Zeolitic imidazolate framework-8 (ZIF-8) has been proved to be an effective platform for enzyme immobilization due to its easy preparation and biocompatibility. However, the intrinsic hydrophobic characteristic hinders its further development in this filed. Herein, a facile synthesis approach was developed to immobilize pepsin (PEP) on the ZIF-8 carrier by using Ni2+ ions as anchor (ZIF-8@PEP-Ni). By contrast, the direct coating of PEP on the surface of ZIF-8 (ZIF-8@PEP) generated significant conformational changes. Electrochemical oxygen evolution reaction (OER) was employed to study the catalytic activity of immobilized PEP. The ZIF-8@PEP-Ni composite attains remarkable OER performance with an ultralow overpotential of only 127 mV at 10 mA cm-2 , which is much lower than the 690 and 919 mV overpotential values of ZIF-8@PEP and PEP, respectively.


Metal-Organic Frameworks , Zeolites , Metal-Organic Frameworks/chemistry , Zeolites/chemistry , Enzymes, Immobilized/chemistry , Pepsin A , Ions
6.
Chem Sci ; 13(32): 9381-9386, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-36093018

Fluorescent dithienylethene-based photochromic materials have been attracting considerable attention owing to their wide applications in biological and materials sciences. However, the limitations of detrimental UV irradiation for photocyclization, short emission lifetime, and inefficient photoresponsive speed still need to be addressed. Herein, a novel dithienylethene photochromic molecule, BFBDTE, has been prepared by the incorporation of a difluoroboron ß-diketonate (BF2bdk) unit. The strong electron acceptor BF2bdk not only reduces the energy gap of the open isomer, ensuring visible light-controlled fluorescence switching, but also promotes intersystem crossing for the generation of thermally activated delayed fluorescence (TADF). Upon alternating irradiation with green and NIR light, BFBDTE presents a rare example of photochromism, fluorescence and TADF switching in various polar solvents and a poly(methyl methacrylate) (PMMA) film. Meanwhile, it shows rapid and well repeatable cyclization (12 s) and cycloreversion reactions (20 s) in PMMA, accompanied by fast TADF switching within 11 s. Furthermore, photo-electrochemical measurements reveal a remarkable on-off photoelectronic response (photocurrent density ratio: I light/I dark = 684) between the open- and closed-form of BFBDTE. These remarkable merits make BFBDTE promising for photoswitchable molecular devices, optical memory storage systems, NIR detectors, and photoelectric switching.

7.
Inorg Chem ; 61(34): 13234-13238, 2022 Aug 29.
Article En | MEDLINE | ID: mdl-35975946

Presented here are the synthesis and gas-phase photocatalytic CO2 reduction of an anionic porous Zn-metalated porphyrin metal-organic framework (MOF) induced by an ionic liquid. The desired CO2 affinity and deep conduction band position of the MOF catalyst provide strong kinetic and thermodynamic advantages for photocatalytic CO2 to CH4 conversion with high selectivity (∼70%) in H2O vapor.

8.
Dalton Trans ; 51(30): 11231-11235, 2022 Aug 02.
Article En | MEDLINE | ID: mdl-35880646

A novel metal-organic framework (MOF) host-guest material [Cd3(EtOIPA)4(HAD)2]·H2O has been successfully synthesized by the reaction of 5-ethoxyisophthalic acid (EtOIPA), acridine (AD) and Cd(II) salts under hydrothermal conditions. Structurally, the title MOF possesses a trinucleate Cd(II) based 2D double-layer with the protonated AD cations as the template encapsulated into the grids. The combination of experiments and theoretical calculations reveals that the orderly arrangement of EtOIPA dimers, protonated AD cations and trinucleate Cd(II) clusters generates highly delocalized π-electron channels with a prolonged exciton lifetime. The MOF powders show bright yellow emission with a long lifetime of 50.63 ns. Photoelectrochemical measurements reveal a high photocurrent density ratio of 290 between light and dark conditions at 0 V bias potential, making it a perfect self-driven photodetector. By coating the yellow phosphor on a commercially available blue LED, a high performance white LED with CIE, CCT and CRI values of (0.325, 0.336), 88.2 and 5844 K, respectively can be obtained.

9.
Dalton Trans ; 51(26): 10055-10060, 2022 Jul 05.
Article En | MEDLINE | ID: mdl-35726759

The development of organic-inorganic hybrid materials with long-lived room temperature phosphorescence (RTP) has attracted tremendous attention owing to their promising applications in the optoelectronic and anti-counterfeiting fields. In this work, by the selection of lead halide and electron-poor heteroaromatic molecule 1,10-phenanthroline (phen), a coordination polymer [Pb(phen)Cl2] has been synthesized under hydrothermal conditions. This complex shows an alternating arrangement of a long-range order of phen π-conjugated systems and lead halide inorganic chains as revealed by X-ray single-crystal structural analysis. This structural character and special chemical components endow this hybrid material with a rare example of red room temperature phosphorescence. Its electronic structure and electronic transition behavior were further examined by theoretical calculations. Meanwhile, the film of the complex features remarkable angle-dependent polarized emission and photoelectric performance.

10.
Dalton Trans ; 51(5): 1769-1774, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-35043799

The development of luminescent metal-organic frameworks (MOFs) has attracted extensive attention due to their applications in photoelectric devices, organic light-emitting diodes (OLEDs), anti-counterfeiting, biological imaging and so on. In this work, a novel anthracene based metal-organic framework, [Cd(DCPA)(DMF)]·(H2O) (1) (H2DCPA = 9,10-di(p-carboxyphenyl)anthracene), has been successfully synthesized under solvothermal conditions. The highly ordered arrangement and special spatial conformation of the anthracene chromophore play a significant role in the photophysical properties of 1. The combination of theoretical calculations and experiments shows that the molecular orbitals have good separation for inhibiting the recombination of electrons and holes. Furthermore, the fluorescence emission of 1 can be instantaneously and reversibly tuned between blue and green at different polarizing angles. Temperature-dependent fluorescence measurements indicate a good linear relationship between the maximum emission intensity/wavelength and the temperature for efficient thermochromism and luminescence thermometry. Photoelectric measurements reveal that 1 shows high performance of photocurrent generation under light illumination. Therefore, our research affords a new perspective to extend the application of luminescent MOFs in the fields of polarized emission, thermometry and photoelectronic response.

11.
Front Chem ; 9: 765374, 2021.
Article En | MEDLINE | ID: mdl-34805096

The development of molecular crystalline materials with efficient room-temperature phosphorescence has been obtained much attention due to their fascinating photophysical properties and potential applications in the fields of data storage, bioimaging and photodynamic therapy. Herein, a new co-crystal complex [(DCPA) (AD)2] (DCPA = 9,10-di (4-carboxyphenyl)anthracene; AD = acridine) has been synthesized by a facile solvothermal process. Crystal structure analysis reveals that the co-crystal possesses orderly and alternant arrangement of DCPA donors and AD acceptors at molecular level. Fixed by strong hydrogen bonds, the DCPA molecule displays seriously twisty spatial conformation. Density functional theory (DFT) calculations show well separation of HOMO and LUMO for this co-crystal system, suggesting the efficient triplet excitons generation. Photoluminescence measurements show intensive cyan fluorescence (58.20 ns) and direct white phosphorescence (325 µs) emission at room-temperature. The transient current density-time curve reveals a typical switching electric response under the irradiation of simulated light, reveal that the [(DCPA) (AD)2] co-crystal has a high photoelectric response performance.

12.
Inorg Chem ; 60(24): 18593-18597, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34822244

The relationship between the aggregation states of pyrene-based linkers and the photoluminescence/photoelectric performance was well studied by the formation of an anionic metal-organic framework, [BMI]2[Mg3(TBAPy)2(H2O)4]·2dioxane, which shows highly enhanced light-harvesting and photoelectric conversion efficiency by the encapsulation of D-π-A cation dyes.

13.
Chem Commun (Camb) ; 57(68): 8468-8471, 2021 Sep 04.
Article En | MEDLINE | ID: mdl-34346420

A high loading of Mn(ii)-metalated porphyrin was achievable in a 2D porphyrin-based Mn-MOF induced by an ionic liquid. The excellent stability, sufficient redox potential, atomically dispersed porphyrin Mn(ii) sites, desired CO2 affinity, high visible light-harvesting and efficient charge separation, endow this MOF with the overall photocatalytic conversion of CO2 to CH4 in gas-solid conditions.

14.
Inorg Chem ; 60(14): 10109-10113, 2021 Jul 19.
Article En | MEDLINE | ID: mdl-34184871

Molecule-based crystalline materials with angle-dependent polarized emission have attracted considerable attention owing to their extensive applications in displays and anticounterfeiting. Herein, one anionic metal-organic framework (MOF) {[Zn2.5(µ3-OH)(NDC)2(HNDC)](HPIM)}n was constructed on the basis of an excellent photoactive ligand naphthalene-1,4-dicarboxylic acid (H2NDC). The protonated 2-propylimidazole (HPIM) guests residing in the nanochannels of MOF can be exchanged by a D-π-A cationic dye. The resulted host-guest system shows a rare example of ratiometric fluorescent polarizations and highly enhanced photoelectron performance in comparison with the pristine MOF.

15.
Inorg Chem ; 60(2): 846-851, 2021 Jan 18.
Article En | MEDLINE | ID: mdl-33406364

Metal-organic frameworks (MOFs) or coordination polymers (CPs)-based phosphorescence materials may provide a powerful route for photoelectric and optical recording devices. Herein, two phosphorescence ligands, iso-phthalic acid (IPA) and 2-methylimidazole (MIM), were selected to construct an nonporous CP {Zn(IPA)(MIM)2} (1) with a long-lived phosphorescence lifetime up to 552 ms. By the doping of Eosin Y (EY) dye molecules under an in situ process, the phosphorescence emission color of 1 can be expressly tuned from green to red. The light-harvesting range can also be vastly broadened from the UV to the visible region (550 nm). Photoelectron measurements reveal that the synergistic effect of bias voltage and illumination can greatly restrain electron-hole recombination for the generation of additional free charges.

16.
Gene ; 766: 145153, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-32950633

AIM: Acute lung injury (ALI) is the mild form of acute respiratory distress syndrome (ARDS) which is a common lung disease with a high incidence and mortality rate. Recent studies manifested that some circular RNAs were associated with ALI. In this study, we aimed to uncover the effect of circular RNA circ_0054633 on ALI initiation and progression and proposed a new mechanism related to ALI. METHODS: The lipopolysaccharides (LPS)-induced acute lung injury model were build both in vivo of rat and in vitro of primary murine pulmonary microvascular endothelial cells (MPVECs). Hematoxylin and eosin (H&E) was employed to observe the tissue morphology and estimate the degree of lung damage. We used real-time quantitative polymerase chain reaction (RT-qPCR) to measure the expression level of circ_0054633. The expression levels of inflammatory cytokines IL-17A and tumor necrosis factor-α (TNF-α) were detected by ELISA. The effects of circ_0054633 on MPVECs proliferation and apoptosis were detected with the help of CCK-8 and apoptosis assay, separately. The expression level of NF-κB p65 protein was measured by Western blot. RESULTS: circ_0054633, IL-17A, TNF-α and NF-κB p65 were all overexpressed in LPS-treated rat and MPVECs, and LPS enhanced the proliferation and apoptosis of MPVECs. While circ_0054633 silencing reversed the above promotion effects of LPS on IL-17A, TNF-α expression and MPVECs proliferation and apoptosis. CONCLUSIONS: Quietness of circ_0054633 alleviated LPS-induced ALI via NF-κB signaling pathway, implicating circ_0054633 may be a potential biomarker for diagnose and therapy of ALI.


Acute Lung Injury/metabolism , Cell Proliferation/physiology , Endothelial Cells/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , RNA, Circular/metabolism , Acute Lung Injury/chemically induced , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Proliferation/drug effects , Cells, Cultured , Inflammation/chemically induced , Interleukin-17/metabolism , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Male , Mice , Rats , Rats, Sprague-Dawley , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism
17.
Front Chem ; 8: 593948, 2020.
Article En | MEDLINE | ID: mdl-33262972

The development of metal-organic framework (MOF) based room-temperature phosphorescence (RTP) materials has raised extensive concern owing to their widespread applications in the field of anti-counterfeiting, photovoltaics, photocatalytic reactions, and bio-imaging. Herein, one new binuclear Mn(II) based 3D MOF [Mn2(L)(BMIB)·(H2O)] (1) (H5L = 3,5-bis(3,5-dicarboxylphenxoy) benzoic acid, BMIB = tran-4-bis(2-methylimidazolyl)butylene) has been synthesized by a facile hydrothermal process. In 1, the protonated BMIB cations show infinite π-stacking arrangement, residing in the channels of the 3D network extended by L ligand and binuclear Mn(II) units. The orderly and uniform host-guest system at molecular level emits intense white light fluorescence and long-lived near infrared phosphorescence under ambient conditions. These photophysical processes were well-studied by density functional theory (DFT) calculations. Photoelectron measurements reveal high photoelectron response behavior and incident photon-to-current efficiency (IPCE).

18.
Dalton Trans ; 49(48): 17772-17778, 2020 Dec 22.
Article En | MEDLINE | ID: mdl-33245085

Two-dimensional (2D) metal-organic framework (MOF) nanosheets have emerged as a new member of 2D nanomaterials for molecular sieving, energy conversion and storage, catalysis and biomedicine. In this paper, a highly dense assembly of porphyrin achievable in porphyrin-integrated MOF nanosheets induced by an ionic liquid is obtained by sonication exfoliation of its bulk crystals. The 2D layered structure MOF, [BMI]2[Ca3(H2TCPP)2(µ2-OH2)2(H2O)2] (1), was firstly prepared by using the ionic liquid assisted synthetic method (H6TCPP = meso-tetra(carboxyphenyl) porphyrin, BMI = 1-butyl-3-methylimidazolium). The laminated layers in 1 clearly indicate a weak interlayer non-covalent interaction but a strong metal-carboxylate bonding within the layers, which facilitates the exfoliation of 1 to form 2D MOF nanosheets (1 NSs). Powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM) and fast Fourier transform (FFT) patterns revealed that 1 NSs could maintain their crystalline structure after exfoliation. These MOF nanosheets exhibited excellent aqueous dispersibility, biodegradability and high cytotoxicity under light irradiation against MCF-7 cells.


Antineoplastic Agents/pharmacology , Ionic Liquids/pharmacology , Metal-Organic Frameworks/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Ionic Liquids/chemistry , MCF-7 Cells , Metal-Organic Frameworks/chemical synthesis , Metal-Organic Frameworks/chemistry , Optical Imaging , Particle Size , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Surface Properties
19.
Phys Chem Chem Phys ; 22(36): 20202-20211, 2020 Sep 23.
Article En | MEDLINE | ID: mdl-32966422

The trade-off problem between light absorption and charge collection under lower band-bending (bias) is extremely difficult to resolve in water splitting on photoelectrodes. Although the use of metallic back-reflectors, antireflection coatings, and textured substrates and light absorbers enable the improvement of light utilization efficiency, these methods still suffer from high cost and complex fabrication process, especially, incompetent separation of photogenerated carriers. Here taking the hematite (α-Fe2O3) photoanode as a model, we report that a noncontact photonic crystal (PC) film composed of silica nanoparticles and ethoxylated trimethylolpropane triacrylate (ETPTA) resin can significantly enhance the photoelectrochemical (PEC) activity of the photoelectrode. Specifically, more than 250 mV cathodic shift in the onset potential and 4 times larger photocurrent at 1.0 V versus a reversible hydrogen electrode (RHE) were achieved over the α-Fe2O3-PC photoanode hybrid system, compared with the pristine α-Fe2O3 photoanode. Our work showed that a PC film not only boosted light absorption of the α-Fe2O3 layer but also improved its charge transfer efficiency under light illumination. These new findings of the synergistic effect will open a new avenue to design high-performance solar energy conversion devices.

20.
Inorg Chem ; 59(15): 10395-10399, 2020 Aug 03.
Article En | MEDLINE | ID: mdl-32700527

A new strategy to enhance the room temperature phosphorescence performance has been developed through hexanuclear Zn(II)-cluster-induced dense π-stacking in a metal-organic framework matrix. The synergistic effect of metal clusters and large overlap of π-conjugated dimers facilitate the phosphorescence emission, migration, and separation of charge carriers for excellent photocatalytic activity.

...