Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 255
1.
J Immunother Cancer ; 12(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38641349

BACKGROUND: Combining immune checkpoint inhibitors (ICIs) with chemotherapy has become a standard treatment for patients with non-small cell lung cancer (NSCLC) lacking driver gene mutations. Reliable biomarkers are essential for predicting treatment outcomes. Emerging evidence from various cancers suggests that early assessment of serum metabolites could serve as valuable biomarkers for predicting outcomes. This study aims to identify metabolites linked to treatment outcomes in patients with advanced NSCLC undergoing first-line or second-line therapy with programmed cell death 1 (PD-1) inhibitors plus chemotherapy. METHOD: 200 patients with advanced NSCLC receiving either first-line or second-line PD-1 inhibitor plus chemotherapy, and 50 patients undergoing first-line chemotherapy were enrolled in this study. The 200 patients receiving combination therapy were divided into a Discovery set (n=50) and a Validation set (n=150). These sets were further categorized into respond and non-respond groups based on progression-free survival PFS criteria (PFS≥12 and PFS<12 months). Serum samples were collected from all patients before treatment initiation for untargeted metabolomics analysis, with the goal of identifying and validating biomarkers that can predict the efficacy of immunotherapy plus chemotherapy. Additionally, the validated metabolites were grouped into high and low categories based on their medians, and their relationship with PFS was analyzed using Cox regression models in patients receiving combination therapy. RESULTS: After the impact of chemotherapy was accounted for, two significant differential metabolites were identified in both the Discovery and Validation sets: N-(3-Indolylacetyl)-L-alanine and methomyl (VIP>1 and p<0.05). Notably, upregulation of both metabolites was observed in the group with a poorer prognosis. In the univariate analysis of PFS, lower levels of N-(3-Indolylacetyl)-L-alanine were associated with longer PFS (HR=0.59, 95% CI, 0.41 to 0.84, p=0.003), and a prolonged PFS was also indicated by lower levels of methomyl (HR=0.67, 95% CI, 0.47 to 0.96, p=0.029). In multivariate analyses of PFS, lower levels of N-(3-Indolylacetyl)-L-alanine were significantly associated with a longer PFS (HR=0.60, 95% CI, 0.37 to 0.98, p=0.041). CONCLUSION: Improved outcomes were associated with lower levels of N-(3-Indolylacetyl)-L-alanine in patients with stage IIIB-IV NSCLC lacking driver gene mutations, who underwent first-line or second-line therapy with PD-1 inhibitors combined with chemotherapy. Further exploration of the potential predictive value of pretreatment detection of N-(3-Indolylacetyl)-L-alanine in peripheral blood for the efficacy of combination therapy is warranted. STATEMENT: The combination of ICIs and chemotherapy has established itself as the new standard of care for first-line or second-line treatment in patients with advanced NSCLC lacking oncogenic driver alterations. Therefore, identifying biomarkers that can predict the efficacy and prognosis of immunotherapy plus chemotherapy is of paramount importance. Currently, the only validated predictive biomarker is programmed cell death ligand-1 (PD-L1), but its predictive value is not absolute. Our study suggests that the detection of N-(3-Indolylacetyl)-L-alanine in patient serum with untargeted metabolomics prior to combined therapy may predict the efficacy of treatment. Compared with detecting PD-L1 expression, the advantage of our biomarker is that it is more convenient, more dynamic, and seems to work synergistically with PD-L1 expression.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , B7-H1 Antigen/antagonists & inhibitors , Biomarkers , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Metabolomics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
2.
In Vitro Cell Dev Biol Anim ; 60(4): 432-440, 2024 Apr.
Article En | MEDLINE | ID: mdl-38573397

It has been reported that the effective inhibition of vascular endothelial growth factor (VEGF) can prevent the progression of ovarian hyperstimulation syndrome (OHSS). The present study aimed to investigate the mechanism underlying the effect of vitamin D3 (VD3) on OHSS in mouse models and granulosa cells. The effects of VD3 administration (16 and 24 IU) on ovarian permeability were determined using Evans blue. In addition, ovarian pathology, corpus luteum count, inflammatory responses, and hormone and VEGFA levels were assessed using pathological sections and ELISA. Molecular docking predicted that pentraxin 3 (PTX3) could be a potential target of VD3, and therefore, the effects of human chorionic gonadotropin (hCG) and VD3 as well as PTX3 overexpression on the production and secretion of VEGFA in granulosa cells were also investigated using western blotting and immunofluorescence. Twenty-four IU VD3 significantly reversed the increase in ovarian weight and permeability in mice with OHSS. Additionally, VD3 diminished congestion and the number of corpus luteum in the ovaries and reduced the secretion levels of inflammatory factors and those of estrogen and progesterone. Notably, VD3 downregulated VEGFA and CD31 in ovarian tissues, while the expression levels of PTX3 varied among different groups. Furthermore, VD3 restored the hCG-induced enhanced VEGFA and PTX3 expression levels in granulosa cells, whereas PTX3 overexpression abrogated the VD3-mediated inhibition of VEGFA production and secretion. The present study demonstrated that VD3 could inhibit the release of VEGFA through PTX3, thus supporting the beneficial effects of VD3 administration on ameliorating OHSS symptoms.


C-Reactive Protein , Cholecalciferol , Granulosa Cells , Ovarian Hyperstimulation Syndrome , Serum Amyloid P-Component , Vascular Endothelial Growth Factor A , Animals , Female , Humans , Mice , C-Reactive Protein/metabolism , Cholecalciferol/pharmacology , Chorionic Gonadotropin/pharmacology , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Granulosa Cells/pathology , Ovarian Hyperstimulation Syndrome/metabolism , Ovarian Hyperstimulation Syndrome/pathology , Ovary/metabolism , Ovary/drug effects , Ovary/pathology , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred ICR
3.
Free Radic Res ; 58(3): 180-193, 2024 Mar.
Article En | MEDLINE | ID: mdl-38535980

OBJECTIVE: Acute myocardial infarction (AMI) ranks among the top contributors to sudden death and disability worldwide. It should be noted that current therapies always cause increased reperfusion damage. Evidence suggests that humanin (HN) reduces mitochondrial dysfunction to have cardio-protective effects against MI-reperfusion injury. In this context, we hypothesized that HN may attenuate MI-reperfusion injury by alleviating lymphatic endothelial cells dysfunction through the regulation of mitophagy. MATERIALS AND METHODS: In this study, primary lymphatic endothelial cells were selected as the experimental model. Cells were maintained under 1% O2 to induce a hypoxic phenotype. For in vivo experiments, the left coronary arteries of C57/BL6 mice were clamped for 45 min followed by 24 h reperfusion to develop MI-reperfusion injury. The volume of infarcted myocardium in MI-reperfusion injury mouse models were TTC staining. PCR and western blot were used to quantify the expression of autophagy-, mitophagy- and mitochondria-related markers. The fibrosis and apoptosis in the ischemic area were evaluated for Masson staining and TUNEL respectively. We also used western blot to analyze the expression of VE-Cadherin in lymphatic endothelial cells. RESULTS: We firstly exhibited a specific mechanism by which HN mitigates MI-reperfusion injury. We demonstrated that HN effectively reduces such injury in vivo and also inhibits dysfunction in lymphatic endothelial cells in vitro. Importantly, this inhibitory effect is mediated through BNIP3-associated mitophagy. CONCLUSIONS: In conclusion, HN alleviates myocardial infarction-reperfusion injury by inhibiting lymphatic endothelial cells dysfunction, primarily through BNIP3-mediated mitophagy.


Endothelial Cells , Membrane Proteins , Mitochondrial Proteins , Mitophagy , Myocardial Reperfusion Injury , Animals , Mice , Endothelial Cells/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Humans , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Male , Intracellular Signaling Peptides and Proteins/metabolism
4.
Heliyon ; 10(3): e24889, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38322867

Digital transformation plays an important role in improving the efficiency of production of enterprises and can provide strong support for green and sustainable development. Compared with domestic enterprises, outward foreign direct investment (OFDI) enterprises have greater access to advanced digital technology. This paper aims to analyze the path selection of green and sustainable production for the digital transformation of manufacturing outward foreign direct investment (OFDI) companies, whether gradual or leapfrogging. However, there is a lack of systemic game mechanisms and numerical simulation methods for heterogeneous enterprises. Based on the analysis of reverse technology spillover intensity of outward foreign direct investment (OFDI) and differences in the absorptive capacity of enterprises, we have proposed the evolutionary game model for different path selection of digital transformation of manufacturing enterprises, due to heterogeneous enterprises under different spillover degrees with numerical analysis methods. The research results show that: (i) Under low reverse technology spillover intensity, all enterprises evolve to a gradual transformation path, and enterprises with weaker absorptive capacity converge faster; (ii) There is a certain threshold for reverse technology spillover. When reverse technology spillover intensity exceeds the threshold, enterprises with stronger absorptive capacity converge to a leapfrog transformation path, but enterprises with weak absorptive capacity converge to a gradual transformation path; (iii) With high reverse technology spillover intensity, all enterprises evolve toward a leapfrog transformation path, and faster convergence happens to enterprises with higher absorptive capacity. The evolutionary game path of digital transformation in manufacturing enterprises is illustrated in Fig. 1.

5.
J Clin Invest ; 134(6)2024 Feb 06.
Article En | MEDLINE | ID: mdl-38319733

Epigenetics is a biological process that modifies and regulates gene expression, affects neuronal function, and contributes to pain. However, the mechanism by which epigenetics facilitates and maintains chronic pain is poorly understood. We aimed to determine whether N6-methyladenosine (m6A) specifically modified by methyltransferase-like 14 (METTL14) alters neuronal activity and governs pain by sensitizing the GluN2A subunit of the N-methyl-d-aspartate receptor (NMDAR) in the dorsal root ganglion (DRG) neurons in a model of chemotherapy-induced neuropathic pain (CINP). Using dot blotting, immunofluorescence, gain/loss-of-function, and behavioral assays, we found that m6A levels were upregulated in L4-L6 DRG neurons in CINP in a DBP/METTL14-dependent manner, which was also confirmed in human DRGs. Blocking METTL14 reduced m6A methylation and attenuated pain hypersensitivity. Mechanistically, METTL14-mediated m6A modification facilitated the synaptic plasticity of DRG neurons by enhancing the GluN2A subunit of NMDAR, and inhibiting METTL14 blocked this effect. In contrast, overexpression of METTL14 upregulated m6A modifications, enhanced presynaptic NMDAR activity in DRG neurons, and facilitated pain sensation. Our findings reveal a previously unrecognized mechanism of METTL14-mediated m6A modification in DRG neurons to maintain neuropathic pain. Targeting these molecules may provide a new strategy for pain treatment.


Adenine , Antineoplastic Agents , Neuralgia , Humans , Adenine/analogs & derivatives , Methyltransferases/genetics , Neuralgia/chemically induced , Neuralgia/genetics , Receptors, N-Methyl-D-Aspartate/genetics , RNA-Binding Proteins
6.
Transl Psychiatry ; 14(1): 122, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38413577

Estrogens promote binge alcohol drinking and contribute to sex differences in alcohol use disorder. However, the mechanisms are largely unknown. This study aims to test if estrogens act on 5-hydroxytryptamine neurons in the dorsal raphe nucleus (5-HTDRN) to promote binge drinking. We found that female mice drank more alcohol than male mice in chronic drinking in the dark (DID) tests. This sex difference was associated with distinct alterations in mRNA expression of estrogen receptor α (ERα) and 5-HT-related genes in the DRN, suggesting a potential role of estrogen/ERs/5-HT signaling. In supporting this view, 5-HTDRN neurons from naïve male mice had lower baseline firing activity but higher sensitivity to alcohol-induced excitation compared to 5-HTDRN neurons from naïve female mice. Notably, this higher sensitivity was blunted by 17ß-estradiol treatment in males, indicating an estrogen-dependent mechanism. We further showed that both ERα and ERß are expressed in 5-HTDRN neurons, whereas ERα agonist depolarizes and ERß agonist hyperpolarizes 5-HTDRN neurons. Notably, both treatments blocked the stimulatory effects of alcohol on 5-HTDRN neurons in males, even though they have antagonistic effects on the activity dynamics. These results suggest that ERs' inhibitory effects on ethanol-induced burst firing of 5-HTDRN neurons may contribute to higher levels of binge drinking in females. Consistently, chemogenetic activation of ERα- or ERß-expressing neurons in the DRN reduced binge alcohol drinking. These results support a model in which estrogens act on ERα/ß to prevent alcohol-induced activation of 5-HTDRN neurons, which in return leads to higher binge alcohol drinking.


Binge Drinking , Estrogen Receptor alpha , Mice , Female , Male , Animals , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Dorsal Raphe Nucleus/metabolism , Estrogen Receptor beta/agonists , Estrogen Receptor beta/metabolism , Serotonin/metabolism , Estrogens/pharmacology , Ethanol/pharmacology
7.
Sci Total Environ ; 918: 170668, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38320701

BACKGROUND: Transient receptor potential (TRP) ankyrin 1 (TRPA1) could mediate ozone-induced lung injury. Optic Atrophy 1 (OPA1) is one of the significant mitochondrial fusion proteins. Impaired mitochondrial fusion, resulting in mitochondrial dysfunction and ferroptosis, may drive the onset and progression of lung injury. In this study, we examined whether TRPA1 mediated ozone-induced bronchial epithelial cell and lung injury by activating PI3K/Akt with the involvement of OPA1, leading to ferroptosis. METHODS: Wild-type, TRPA1-knockout (KO) mice (C57BL/6 J background) and ferrostatin-1 (Fer-1)-pretreated mice were exposed to 2.5 ppm ozone for 3 h. Human bronchial epithelial (BEAS-2B) cells were treated with 1 ppm ozone for 3 h in the presence of TRPA1 inhibitor A967079 or TRPA1-knockdown (KD) as well as pharmacological modulators of PI3K/Akt-OPA1-ferroptosis. Transcriptome was used to screen and decipher the differential gene expressions and pathways. Oxidative stress, inflammation and ferroptosis were measured together with mitochondrial morphology, function and dynamics. RESULTS: Acute ozone exposure induced airway inflammation and airway hyperresponsiveness (AHR), reduced mitochondrial fusion, and enhanced ferroptosis in mice. Similarly, acute ozone exposure induced inflammatory responses, altered redox responses, abnormal mitochondrial structure and function, reduced mitochondrial fusion and enhanced ferroptosis in BEAS-2B cells. There were increased mitochondrial fusion, reduced inflammatory responses, decreased redox responses and ferroptosis in ozone-exposed TRPA1-KO mice and Fer-1-pretreated ozone-exposed mice. A967079 and TRPA1-KD enhanced OPA1 and prevented ferroptosis through the PI3K/Akt pathway in BEAS-2B cells. These in vitro results were further confirmed in pharmacological modulator experiments. CONCLUSION: Exposure to ozone induces mitochondrial dysfunction in human bronchial epithelial cells and mouse lungs by activating TRPA1, which results in ferroptosis mediated via a PI3K/Akt/OPA1 axis. This supports a potential role of TRPA1 blockade in preventing the deleterious effects of ozone.


Ferroptosis , Lung Injury , Mitochondrial Diseases , Oximes , Ozone , Humans , Mice , Animals , Lung Injury/chemically induced , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ozone/metabolism , Mice, Inbred C57BL , Inflammation/chemically induced , Epithelial Cells , Mitochondrial Diseases/metabolism , Lung/metabolism , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/pharmacology , TRPA1 Cation Channel/metabolism
8.
Environ Res ; 246: 118191, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38218522

Water scarcity has threatened the sustainability of human life, ecosystem evolution, and socio-economic development. However, previous studies have often lacked a comprehensive consideration of the impact of water quality and existing solutions, such as inter-basin water transfer and unconventional water resources, on water scarcity. In this paper, an improved approach was proposed to quantify water scarcity levels by comprehensively considering surface water quality and multiple solutions. China's water scarcity was first assessed at a high spatial resolution on a monthly basis over the 5-year period from 2014 to 2018. Then, the driving factors including water quality and solutions were identified by a geographic detector model. Finally, an in-depth investigation was conducted to unravel the effects of water quantity solutions (i.e., inter-basin water transfer and unconventional water use), and water quality solutions (i.e., improving surface water quality) on alleviating water scarcity. Based on monthly assessments considering water quality and multiple existing solutions, the results showed that over half of the national population (∼777 million) faced water scarcity for at least one month of the year. Agricultural water use and inadequate water quality were the main driving factors responsible for China's water scarcity. Over four-fifths of the national population (∼1.10 billion) could benefit from alleviated water scarcity through a combination of water quantity and quality solutions. However, the existing solutions considered were insufficient to completely resolve water scarcity in China, especially in Northern China, persisting as a challenging issue. The results obtained from this study provided a better understanding of China's water scarcity, which could contribute to guiding future efforts aimed at alleviating water scarcity and ensuring water security in China.


Ecosystem , Water Quality , Humans , Water Insecurity , China , Population Dynamics
9.
Obes Sci Pract ; 10(1): e725, 2024 Feb.
Article En | MEDLINE | ID: mdl-38263989

Objective: Responders of the World Trade Center (WTC) disaster suffer from co-morbidities. A Mediterranean Diet (MedDiet) nutrition intervention with physical activity was implemented among WTC responders with overweight/obesity and post-traumatic stress disorder (PTSD). Methods: WTC Health Program members (N = 62), 45-65 years, males 87%, body mass index (BMI) 27-45 kg/m2 randomized to MedDiet (n = 31) or usual nutrition counseling (n = 31). The 10-week intervention included online nutrition education, text messages, and group experiential cooking; both groups had three in-person individual nutrition counseling. Anthropometrics, serum biomarkers, psychosocial factors, MedDiet score, and PTSD symptoms were assessed at baseline, post-intervention, and 3-months (follow-up). The primary outcome was intervention feasibility and secondary outcomes were within- and between-group changes of all measures at post-intervention and follow-up. Nonparametric Wilcoxon rank sum tests for between-group comparisons and Wilcoxon signed rank tests for pre-post within-group comparisons. Results: A total of 58(94%) and 46(74%) participants completed the post-intervention and follow-up measurements, respectively. Both groups experienced significant improvements in anthropometrics, MedDiet score, oxidized low-density lipoprotein, and PTSD symptoms. Baseline median (range) were weight 100.42 (73.66-135.17) kg, BMI 33.20 (27.50-41.75) kg/m2, and Waist circumference (WC) 109.22 (90.17-150.62) cm. Median % weight loss at post-intervention was MedDiet: -3% (-11%-7%), p = 0.0002; Control: -1% (-13%-4%), p = 0.008 and at follow-up MedDiet: -2% (-14%-12%), p = 0.07; Control: -2% (-20%-3%), p = 0.006. The overall BMI was reduced by -0.68 kg/m2 (-4.61-2.09) kg/m2 p < 0.0001 at post-intervention and by -0.60 kg/m2 (-6.91-3.39) kg/m2, p < 0.0009 at follow-up. Overall, median WC was reduced (p < 0.0001); post-intervention -3.81 cm (-33.00-3.30)cm and follow-up -4.45(-38.10-4.57)cm. There were group differences in HbA1c (p = 0.019) and serum ω6/ω3 (p = 0.029) at post-intervention. Conclusion: Online intervention with personal counseling was feasible in this population. Improvements in anthropometrics, MedDiet score, selected serum biomarkers and PTSD symptoms were found in both groups; group differences in HbA1c and serum ω6/ω3. A larger study with a delayed control is needed to better assess intervention effects.

10.
Food Res Int ; 176: 113775, 2024 Jan.
Article En | MEDLINE | ID: mdl-38163700

Lutein exhibits excellent functional activity making it useful in many fields. Nevertheless, its use is limited by its physical and chemical instability. Here, collagen and Lycium barbarum L. leaf flavonoids (LBLF) were used as emulsifiers, their structures were characterized, the properties of the complexes were evaluated, and their stabilizing effects on lutein emulsions were explored. According to the results, the encapsulation rate of the complex of collagen-LBLF was (68.67 ± 1.43) % and the drug loading was (6.92 ± 0.13) %. Collagen compounded LBLF with a changed structure and morphology, resulting in improved antioxidant capacity, better foaming and emulsification, and reduced hydrophobicity. In addition, the thiobarbituric acid value of collagen-LBLF stabilized lutein emulsion (0.0012 ± 0.00011) mg/kg was significantly lower than that of collagen stabilized lutein emulsion (0.0021 ± 0.00016)  mg/kg (P < 0.05), indicating that the composite stabilized lutein emulsion obtained higher stability. LBLF contributed a high free radical scavenging effect and inhibited lutein degradation during storage. During simulated digestion, collagen-LBLF effectively stabilized the emulsion and protected lutein from destruction, made it release more slowly, and benefited the bio-accessibility of lutein during the next utilization step. Based on the present study, improved storage and digestion stabilities of lutein wereachievedby the utilization of collagen-LBLF complex, which provides a new method for the preparation and application of composite functional emulsifiers.


Lutein , Lycium , Emulsions/chemistry , Lutein/chemistry , Emulsifying Agents , Antioxidants
11.
Cell Death Dis ; 15(1): 43, 2024 01 13.
Article En | MEDLINE | ID: mdl-38218935

Acute lung injury (ALI) as well as its more severe form, acute respiratory distress syndrome (ARDS), frequently leads to an uncontrolled inflammatory response. N6-methyladenosine (m6A) modification was associated with the progression of several inflammatory diseases. However, the role of methyltransferase-like 14 (METTL14)-mediated m6A methylation in ALI/ARDS remains unclear. Here, we reported an increase in overall expression levels of m6A and METTL14 in circulating monocyte-derived macrophages recruited to the lung following ALI, which is correlated with the severity of lung injury. We further demonstrated the critical function of METTL14 in activating NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in vitro and in mouse models of ALI/ARDS, and validated NLRP3 as the downstream target of METTL14 by the m6A RNA immunoprecipitation (MeRIP) and RIP assays. Mechanistically, METTL14-methylated NLRP3 transcripts were subsequently recognized by insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an m6A reader, which stabilized NLRP3 mRNA. Furthermore, we observed that IGF2BP2 knockdown diminished LPS-induced ALI in mice by downregulating NLRP3 expression. In summation, our study revealed that the molecular mechanism underlying the pathogenesis of ALI/ARDS involves METTL14-mediated activation of NLRP3 inflammasome in an IGF2BP2 dependent manner, thereby demonstrating the potential of METTL14 and IGF2BP2 as promising biomarkers and therapeutic targets for ALI/ARDS treatment.


Acute Lung Injury , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger
12.
Respir Res ; 24(1): 319, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38110986

BACKGROUND: Mitochondrial dysfunction and lung cellular senescence are significant features involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) stands as the primary contributing factor to COPD. This study examined mitochondrial dynamics, mitophagy and lung cellular senescence in COPD patients and investigated the effects of modulation of mitochondrial fusion [mitofusin2 (MFN2) and Optic atrophy 1 (OPA1)] on CS extract (CSE)-induced lung cellular senescence. METHODS: Senescence-associated secretory phenotype (SASP) component mRNAs (IL-1ß, IL-6, CXCL1 and CXCL8), mitochondrial morphology, mitophagy and mitochondria-related proteins (including phosphorylated-DRP1(p-DRP1), DRP1, MFF, MNF2, OPA1, PINK1, PARK2, SQSTM1/p62 and LC3b) and senescence-related proteins (including P16, H2A.X and Klotho) were measured in lung tissues or primary alveolar type II (ATII) cells of non-smokers, smokers and COPD patients. Alveolar epithelial (A549) cells were exposed to CSE with either pharmacologic inducer (leflunomide and BGP15) or genetic induction of MFN2 and OPA1 respectively. RESULTS: There were increases in mitochondrial number, and decreases in mitochondrial size and activity in lung tissues from COPD patients. SASP-related mRNAs, DRP1 phosphorylation, DRP1, MFF, PARK2, SQSTM1/p62, LC3B II/LC3B I, P16 and H2A.X protein levels were increased, while MFN2, OPA1, PINK1 and Klotho protein levels were decreased in lung tissues from COPD patients. Some similar results were identified in primary ATII cells of COPD patients. CSE induced increases in oxidative stress, SASP-related mRNAs, mitochondrial damage and dysfunction, mitophagy and cellular senescence in A549 cells, which were ameliorated by both pharmacological inducers and genetic overexpression of MFN2 and OPA1. CONCLUSIONS: Impaired mitochondrial fusion, enhanced mitophagy and lung cellular senescence are observed in the lung of COPD patients. Up-regulation of MFN2 and OPA1 attenuates oxidative stress, mitophagy and lung cellular senescence, offering potential innovative therapeutic targets for COPD therapy.


GTP Phosphohydrolases , Mitochondrial Dynamics , Mitochondrial Proteins , Pulmonary Disease, Chronic Obstructive , Humans , Cellular Senescence , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Lung/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nicotiana , Protein Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Sequestosome-1 Protein/metabolism
13.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article En | MEDLINE | ID: mdl-38003364

Mammary fat plays a profound role in the postnatal development of mammary glands. However, the specific types (white, brown, or beige) of adipocytes in mammary fat and their potential regulatory effects on modulating mammary gland development remain poorly understood. This study aimed to investigate the role of the browning of mammary fat on pubertal mammary gland development and explore the underlying mechanisms. Thus, the mammary gland development and the serum lipid profile were evaluated in mice treated with CL316243, a ß3-adrenoceptor agonist, to induce mammary fat browning. In addition, the proliferation of HC11 cells co-cultured with brown adipocytes or treated with the altered serum lipid metabolite was determined. Our results showed that the browning of mammary fat by injection of CL316243 suppressed the pubertal development of mice mammary glands, accompanied by the significant elevation of serum dioleoylphosphocholine (DOPC). In addition, the proliferation of HC11 was repressed when co-cultured with brown adipocytes or treated with DOPC. Furthermore, DOPC suppressed the activation of the PI3K/Akt pathway, while the DOPC-inhibited HC11 proliferation was reversed by SC79, an Akt activator, suggesting the involvement of the PI3K/Akt pathway in the DOPC-inhibited proliferation of HC11. Together, the browning of mammary fat suppressed the development of the pubertal mammary gland, which was associated with the elevated serum DOPC and the inhibition of the PI3K/Akt pathway.


Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Adipocytes, Brown/metabolism , Lecithins/pharmacology
14.
Nanomicro Lett ; 15(1): 232, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37861885

Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N4 electronic structure with adjacent Co-N2C2 and nitrogen-coordinated Co nanoclusters, as oxygen electrocatalysts. The resultant optimized electronic structure of the Fe-N4 active center favors the binding capability of intermediates and enhances oxygen reduction reaction (ORR) activity in both alkaline and acid conditions. In addition, anchoring M-N-C atomic sites on highly graphitized carbon supports guarantees of efficient charge- and mass-transports, and escorts the high bifunctional catalytic activity of the entire catalyst. Further, through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses, the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed. This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior. It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M-N-C catalysts.

15.
Int Immunopharmacol ; 125(Pt A): 111081, 2023 Dec.
Article En | MEDLINE | ID: mdl-37862724

Obliterative bronchiolitis (OB) is one of the main complications affecting long-term survival of post-lung transplantation patients. In this study, we evaluated the efficacy of Tk-PQ (a peptide derived from trichosanthin) in alleviating OB in a mouse ectopic tracheal transplant model. We found that post-transplantation treatment of Tk-PQ significant ameliorated OB symptoms including luminal occlusion, epithelial cells loss and fibrosis in the allograft. In addition, Tk-PQ promoted immune suppressive environment by inducing Th2 polarization and increasing Treg population which in turn led to elevated levels of anti-inflammatory cytokines IL-4, IL-10, IL-33 and decreased levels of pro-inflammatory IL-1ß. Mechanistically, we used transcriptome analysis of splenic T cells from allografted mice to show that Tk-PQ treatment down-regulated the PI3K-Akt signaling pathway. Indeed, the immune suppression phenotypes of Tk-PQ was recapitulated by a PI3K inhibitor LY294002. Taken together, Tk-PQ regulates post-transplantation immuno-rejection by modulating the balance of T cell response via the PI3K-Akt pathway, making it a promising peptide based immune rejection suppressant for patients receiving allotransplant.


Bronchiolitis Obliterans , Trichosanthin , Humans , Mice , Animals , Trichosanthin/pharmacology , Trichosanthin/therapeutic use , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Cytokines/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Immunosuppressive Agents/pharmacology
16.
Chem Pharm Bull (Tokyo) ; 71(12): 846-851, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37793851

Dapagliflozin (DAPA), sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is used to treat Type 2 diabetes. In this study, a highly sensitive and selective analytical method based on ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was established and validated for the determination of DAPA in rat plasma. The separation of DAPA and internal standard (DAPA-d5) were performed on a reversed-phase ACQUITY UPLC® BEH C18 column (100 × 3.0 mm, 1.7 µm). The mobile phase is composed of 0.1% formic acid in water (solvent A) and methanol (solvent B) in gradient elution. Under the negative ion mode, full MS/dd-MS2 was adopted to collect data via Q-Orbitrap. DAPA was effectively separated from matrix backgrounds within 10 min, and DAPA in plasma showed a good linear relationship in the range of 10-10000 µg/L. The determination coefficient (R2) was 0.9987, and the lower limit of quantification (LLOQ) was 10 µg/L. The precision and accuracy were all less than 10%, and the extraction recovery of DAPA was 86.16-96.06% from plasma. This study offered an efficient separation and quantification method for DAPA. The improved and validated method succeeded in evaluating the pharmacokinetics of DAPA in rat plasma samples after a single oral administration of 1 mg/kg.


Diabetes Mellitus, Type 2 , Rats , Animals , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Solvents , Reproducibility of Results
17.
Ren Fail ; 45(2): 2255686, 2023.
Article En | MEDLINE | ID: mdl-37732398

BACKGROUND: Heart failure (HF) in patients undergoing maintenance hemodialysis (MHD) increases their hospitalization rates, mortality, and economic burden significantly. We aimed to develop and validate a predictive model utilizing contemporary deep phenotyping for individual risk assessment of all-cause mortality or HF hospitalization in patients on MHD. MATERIALS AND METHODS: A retrospective review was conducted from January 2017 to October 2022, including 348 patients receiving MHD from four centers. The variables were adjusted by Cox regression analysis, and the clinical prediction model was constructed and verified. RESULTS: The median follow-up durations were 14 months (interquartile range [IQR] 9-21) for the modeling set and 14 months (9-20) for the validation set. The composite outcome occurred in 72 (29.63%) of 243 patients in the modeling set and 39 (37.14%) of 105 patients in the validation set. The model predictors included age, albumin, history of cerebral hemorrhage, use of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers/"sacubitril/valsartan", left ventricular ejection fraction, urea reduction ratio, N-terminal prohormone of brain natriuretic peptide, and right atrial size. The C-index was 0.834 (95% CI 0.784-0.883) for the modeling set and 0.853 (0.798, 0.908) for the validation set. The model exhibited excellent calibration across the complete risk profile, and the decision curve analysis (DCA) suggested its ability to maximize patient benefits. CONCLUSION: The developed prediction model offered an accurate and personalized assessment of HF hospitalization risk and all-cause mortality in patients with MHD. It can be employed to identify high-risk patients and guide treatment and follow-up.


Heart Failure , Models, Statistical , Humans , Stroke Volume , Prognosis , Ventricular Function, Left , Heart Failure/therapy , Renal Dialysis , Angiotensin Receptor Antagonists , Hospitalization
18.
Sci Rep ; 13(1): 14670, 2023 Sep 06.
Article En | MEDLINE | ID: mdl-37673930

With the rapid development of computer technology, artificial intelligence and big data technology have undergone a qualitative leap, permeating into various industries. In order to fully harness the role of artificial intelligence in the field of nuclear engineering, we propose to use the LSTM algorithm in deep learning to model the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) core first cycle loading. The BEAVRS core is simulated by DRAGON and DONJON, the training set and the test set are arranged in a sequential fashion according to the evolution of time, and the LSTM model is constructed by changing a number of hyperparameters. In addition to this, the training set and the test set are retained in a chronological order that is different from one another throughout the whole process. Additionally, there is a significant pattern that is followed when subsetting both the training set and the test set. This pattern applies to both sets. The steps in this design are very carefully arranged. The findings of the experiments suggest that the model can be altered by making use of the appropriate hyperparameters in such a way as to bring the maximum error of the effective multiplication factor keff prediction of the core within 2.5 pcm (10-5), and the average error within 0.5266 pcm, which validated the successful application of machine learning to transport equations.

19.
Mol Neurobiol ; 60(10): 5672-5690, 2023 Oct.
Article En | MEDLINE | ID: mdl-37332017

Chemotherapy-induced neuropathic pain (CINP) is a dose-limiting adverse event affecting 40% of chemotherapy patients. MiRNA-mRNA interaction plays an important role in various processes. However, detailed profiling of miRNA-mRNA interactions in CINP remains unclear. Here, a rat-based CINP model was established using paclitaxel, followed by nociceptive behavioral tests related to mechanical allodynia, thermal hyperalgesia, and cold allodynia. The landscape of miRNA-mRNA interaction in the spinal dorsal horn was investigated through mRNA transcriptomics and small RNA sequencing. Under CINP condition, 86 differentially expressed mRNAs and 56 miRNAs were identified. Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated the activity of Odorant binding, postsynaptic specialization and synaptic density, extracellular matrix, mitochondrial matrix, retrograde endocannabinoid signaling, and GTPase activity. Protein-protein interaction (PPI), networks of circRNA-miRNA-mRNA, lncRNA-miRNA-mRNA, and TF-genes were demonstrated. We next explored the immune infiltration microenvironment and found a higher infiltration abundance of Th17 and a lower abundance of MDSC in CINP. RT-qPCR and dual-luciferase assays were used to verify the sequencing results, and single-cell analysis based on the SekSeeq database was conducted. Combined with bioinformatics analyses and experimental validations, Mpz, a protein-coding gene specifically expressed in Schwann cells, was found critical in maintaining CINP under miRNA regulation. Therefore, these data highlight the expression patterns of miRNA-mRNA, and the underlying mechanism in the spinal dorsal horn under CINP condition, and Mpz may serve as a promising therapeutic target for patients with CINP.


Antineoplastic Agents , MicroRNAs , Neuralgia , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , Gene Expression Profiling/methods , Neuralgia/chemically induced , Neuralgia/genetics , Transcriptome/genetics
20.
Mol Metab ; 73: 101747, 2023 07.
Article En | MEDLINE | ID: mdl-37279828

OBJECTIVE: Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS: We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS: PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS: This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.


Obesity , Prolyl Hydroxylases , Animals , Mice , Adipose Tissue, Brown/metabolism , Hydroxylation , Obesity/metabolism , Proline/metabolism , Prolyl Hydroxylases/metabolism , Thermogenesis/physiology
...