Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Front Plant Sci ; 15: 1404980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119498

RESUMEN

Parthenocarpic fruits, known for their superior taste and reliable yields in adverse conditions, develop without the need for fertilization or pollination. Exploring the physiological and molecular mechanisms behind parthenocarpic fruit development holds both theoretical and practical significance, making it a crucial area of study. This review examines how plant hormones and MADS-box transcription factors control parthenocarpic fruit formation. It delves into various aspects of plant hormones-including auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid-ranging from external application to biosynthesis, metabolism, signaling pathways, and their interplay in influencing parthenocarpic fruit development. The review also explores the involvement of MADS family gene functions in these processes. Lastly, we highlight existing knowledge gaps and propose directions for future research on parthenocarpy.

2.
J Med Case Rep ; 18(1): 363, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123243

RESUMEN

BACKGROUND: Due to its unique anatomical characteristics, supracondylar fractures of the humerus are often difficult to achieve firm fixation with internal fixation equipment, resulting in delayed functional exercise, often leaving cubitus varus deformity, elbow stiffness, contractures, and other complications. Here, we report an adult patient with a supracondylar fracture of the humerus who underwent internal fixation through an anterior median incision in the humerus with our self-developed anterior anatomical locking plate of the distal humerus. CASE PRESENTATION: A 29-year-old male patient of Chinese ethnicity with trauma-induced right supracondylar fracture of the humerus and multiple soft tissue contusions, without nerve damage, blood vessel damage, or other injuries, underwent an internal incision in our hospital using a new anatomical locking plate for the anterior distal humerus fixed treatment. During the 16-month follow-up period, the patient's elbow range of motion was almost completely restored, functional scores were excellent, and there were no minor or major postoperative complications. CONCLUSION: In this study, we propose a surgical reconstruction strategy for adult patients with supracondylar humeral fractures. Through the anterior median incision of the humerus, open reduction and internal fixation were performed with an anatomic locking plate on the anterior side of the distal humerus to restore and fix the structure of the distal humerus, and satisfactory clinical results were achieved in our case.


Asunto(s)
Placas Óseas , Fijación Interna de Fracturas , Fracturas del Húmero , Rango del Movimiento Articular , Humanos , Masculino , Adulto , Fracturas del Húmero/cirugía , Fijación Interna de Fracturas/métodos , Articulación del Codo/cirugía , Resultado del Tratamiento , Lesiones de Codo
3.
Cancers (Basel) ; 16(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123386

RESUMEN

Cancer develops from abnormal cell growth in the body, causing significant mortalities every year. To date, potent therapeutic approaches have been developed to eradicate tumor cells, but intolerable toxicity and drug resistance can occur in treated patients, limiting the efficiency of existing treatment strategies. Therefore, searching for novel genes critical for cancer progression and therapeutic response is urgently needed for successful cancer therapy. Recent advances in bioinformatics and proteomic techniques have allowed the identification of a novel category of peptides encoded by non-canonical open reading frames (ncORFs) from historically non-coding genomic regions. Surprisingly, many ncORFs express functional microproteins that play a vital role in human cancers. In this review, we provide a comprehensive description of different ncORF types with coding capacity and technological methods in discovering ncORFs among human genomes. We also summarize the carcinogenic role of ncORFs such as pTINCR and HOXB-AS3 in regulating hallmarks of cancer, as well as the roles of ncORFs such as HOXB-AS3 and CIP2A-BP in cancer diagnosis and prognosis. We also discuss how ncORFs such as AKT-174aa and DDUP are involved in anti-cancer drug response and the underestimated potential of ncORFs as therapeutic targets.

4.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969433

RESUMEN

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Asunto(s)
Técnicas Electroquímicas , Ácidos Indolacéticos , Hojas de la Planta , Ácido Salicílico , Solanum lycopersicum , Acero Inoxidable , Solanum lycopersicum/química , Ácidos Indolacéticos/análisis , Ácido Salicílico/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Acero Inoxidable/química , Técnicas Electroquímicas/instrumentación , Agujas , Enfermedades de las Plantas/microbiología
5.
Int Ophthalmol ; 44(1): 314, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965086

RESUMEN

BACKGROUND: Oxidative stress-induced retinal pigment epithelium (RPE) cell damage is a major factor in age-related macular degeneration (AMD). Vitamin D3 (VD3) is a powerful antioxidant and it has been suggested to have anti-aging properties and potential for treating AMD. This study aimed to investigate the effect of VD3 on RPE cell oxidative apoptosis of RPE cells in order to provide experimental evidence for the treatment of AMD. METHODS: Human retinal pigment epithelial cell 19 (ARPE-19) cells were divided into four groups: blank group (untreated), model group (incubated in medium with 400 µmol/L H2O2 for 1 h), VD3 group (incubated in medium with 100 µmol/L VD3 for 24 h), and treatment group (incubated in medium with 400 µmol/L H2O2 for 1 h and 100 µmol/L VD3 for 24 h). Cell viability, cell senescence, ROS content, expression levels of vitamin D specific receptors, Akt, Sirt1, NAMPT, and JNK mRNA expression levels, SOD activity, and MDA, GSH, and GPX levels were measured. RESULTS: We first established an ARPE-19 cell stress model with H2O2. Our control experiment showed that VD3 treatment had no significant effect on ARPE-19 cell viability within 6-48 h. Treating the stressed ARPE-19 cells with VD3 showed mixed results; caspase-3 expression was decreased, Bcl-2 expression was increased, MDA level of ARPE-19 cells was decreased, GSH-PX, GPX and SOD levels were increased, the relative mRNA expression levels of Akt, Sirt1, NAMPT were increased (P < 0.05), and the relative mRNA expression level of JNK was decreased (P < 0.05). CONCLUSION: VD3 can potentially slow the development of AMD.


Asunto(s)
Apoptosis , Supervivencia Celular , Estrés Oxidativo , Epitelio Pigmentado de la Retina , Humanos , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Degeneración Macular/metabolismo , Vitaminas/farmacología , Vitamina D/farmacología , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Sirtuina 1/metabolismo , Sirtuina 1/genética , Senescencia Celular/efectos de los fármacos , Línea Celular , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad
6.
Chemphyschem ; : e202400232, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031895

RESUMEN

Near-infrared (NIR) light has characteristics of invisibility to human eyes, less background interference, low light scattering, and strong cell penetration. Therefore, NIR luminescent materials have significant applications in imaging, sensing, energy, information storage and display. The development of NIR luminescent materials thus has emerged as a highly dynamic area of research in the realm of contemporary materials. To date, NIR luminescent materials are roughly divided into inorganic materials and organic materials. Compared with inorganic materials, organic NIR luminescent materials have become a hot research topic in recent years due to their rich sources, easy control of structure, simple preparation process, low cost, and good film-forming properties. Among them, iridium(III) [Ir(III)] complexes exhibit excellent properties such as thermal stability, simple synthesis, easy color modulation, short excited state lifetimes, and high brightness, thus becoming one of the ideal luminescent material systems for preparing high-quality organic light-emitting diodes. Therefore, how to obtain Ir(III) complexes with NIR emission and high efficiency through molecular design is a necessary and promising research topic. This work reviews the research progress of representative NIR Ir(III) complexes bearing isoquinoline-, phenazine-, and phthalazine-based ligands reported in recent years and introduces the design strategies and electroluminescent performances of NIR Ir(III) complexes.

7.
Nat Med ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030266

RESUMEN

Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an integrated image-language system (DeepDR-LLM), combining a large language model (LLM module) and image-based deep learning (DeepDR-Transformer), to provide individualized diabetes management recommendations to PCPs. In a retrospective evaluation, the LLM module demonstrated comparable performance to PCPs and endocrinology residents when tested in English and outperformed PCPs and had comparable performance to endocrinology residents in Chinese. For identifying referable DR, the average PCP's accuracy was 81.0% unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, we performed a single-center real-world prospective study, deploying DeepDR-LLM. We compared diabetes management adherence of patients under the unassisted PCP arm (n = 397) with those under the PCP+DeepDR-LLM arm (n = 372). Patients with newly diagnosed diabetes in the PCP+DeepDR-LLM arm showed better self-management behaviors throughout follow-up (P < 0.05). For patients with referral DR, those in the PCP+DeepDR-LLM arm were more likely to adhere to DR referrals (P < 0.01). Additionally, DeepDR-LLM deployment improved the quality and empathy level of management recommendations. Given its multifaceted performance, DeepDR-LLM holds promise as a digital solution for enhancing primary diabetes care and DR screening.

8.
J Affect Disord ; 363: 619-625, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39043307

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a serious and disabling condition characterized by abnormal mood changes. Clinical guidelines for depression treatment recommend antidepressant medications, with benzodiazepines acting as short-term synergists. However, little is currently known about the prevalence and associated clinical risk factors of benzodiazepine use among Chinese patients with MDD. This study aimed to explore the prevalence and clinical risk factors associated with benzodiazepine use in this population. METHODS: A total of 2742 patients with MDD (males/females = 816/1926, aged 14-60 years) participated in this cross-sectional observational study. General information and psychosis assessments were collected online. Depressive symptoms were assessed using the Patient Health Questionnaire-9 (PHQ-9), anxiety symptoms using the Generalized Anxiety Disorder-7 (GAD-7), and sleep problems and suicidal tendencies using the third and ninth items of the PHQ-9. Multivariable logistic regression analysis models were employed to identify factors associated with benzodiazepine use. RESULTS: The prevalence of benzodiazepine use among patients with MDD was 42.9 %. Among these patients, 99.6 % used a single benzodiazepine, with oxazepam being the most frequently prescribed. Age, severity of sleep problems, depressive symptoms, and anxiety symptoms were significantly correlated with benzodiazepine use (all P < 0.001). LIMITATIONS: The cross-sectional design of this study precludes establishing causal relationships. CONCLUSION: Our findings indicate a high prevalence of benzodiazepine use among Chinese patients with MDD. Factors such as severe depressive symptoms, anxiety symptoms, age, and sleep problems appear to be associated with benzodiazepine use. These results underscore the importance of vigilance regarding benzodiazepine use in patients with MDD.

9.
Pestic Biochem Physiol ; 203: 105992, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084793

RESUMEN

Haemaphysalis longicornis, which is widely distributed in China, can transmit various tick-borne diseases such as severe fever with thrombocytopenia syndrome, babesiosis, rickettsia disease and so on, and do great harm to human health and the development of animal husbandry. Chemical acaricides are the most traditional tick control method, but because of its many shortcomings, there is an urgent need to find a substitute with high efficiency, environmental protection and low toxicity. It has been found that some plant essential oils (EOs) have good insecticidal activity and environmental safety. In this study, the components of EOs from Pimenta racemosa and Eugenia caryophyllata were analyzed by gas chromatography-mass spectrometry (GC-MS), and their potential for application in the control of Haemaphysalis longicornis were studied. Gas chromatography-mass spectrometry analysis showed that the main components of P. racemosa EO were eugenol (64.07%), those of E. caryophyllata EO were Hexadecanoic acid, 2-methylpropyl ester (51.84%) and eugenol (39.76%). Larval packet test showed that the EOs of P. racemosa and E. caryophyllata had significant acaricidal activity against unfed larvae of H. longicornis, with LC50 values of 1.20 mg/mL and 0.47 mg/mL and LC90 values of 8.76 mg/mL and 2.91 mg/mL, respectively. The P. racemosa EO, E. caryophyllata EO and eugenol showed significant acaricidal activity against unfed nymph H. longicornis, with LC50 values of 1.65 mg/mL, 2.29 mg/mL and 0.93 mg/mL and LC90 values of 5.03 mg/mL, 11.01 mg/mL and 4.77 mg/mL, respectively. The P. racemosa EO, E. caryophyllata EO and eugenol showed significant acaricidal activity against unfed adults H. longicornis, with LC50 values of 0.51 mg/mL, 2.57 mg/mL and 1.83 mg/mL and LC90 values of 2.44 mg/mL, 11.44 mg/mL and 2.54 mg/mL, respectively. Enzyme assays revealed that the E. caryophyllata EO and eugenol significantly inhibited the activity of carboxylesterase (CarE), eugenol significantly inhibited the activity of catalase (CAT), and two EOs and eugenol had no significant effect on acetylcholinesterase (AchE) (p < 0.05). The above results suggest that the essential oils from P. racemosa and E. caryophyllata have great potential for use as alternatives to synthetic acaricides for tick control.


Asunto(s)
Acaricidas , Eugenia , Ixodidae , Larva , Aceites Volátiles , Pimenta , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Ixodidae/efectos de los fármacos , Acaricidas/farmacología , Eugenia/química , Pimenta/química , Larva/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Aceites de Plantas/farmacología , Aceites de Plantas/química , Eugenol/análogos & derivados , Eugenol/farmacología , Haemaphysalis longicornis
10.
Aging (Albany NY) ; 16(11): 9625-9648, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38829771

RESUMEN

Currently, the repair of large bone defects still faces numerous challenges, with the most crucial being the lack of large bone grafts with good osteogenic properties. In this study, a novel bone repair implant (degradable porous zinc scaffold/BF Exo composite implant) was developed by utilizing laser melting rapid prototyping 3D printing technology to fabricate a porous zinc scaffold, combining it under vacuum conditions with highly bioactive serum exosomes (BF EXO) and Poloxamer 407 thermosensitive hydrogel. The electron microscope revealed the presence of tea saucer-shaped exosomes with a double-layered membrane structure, ranging in diameter from 30-150 nm, with an average size of 86.3 nm and a concentration of 3.28E+09 particles/mL. In vitro experiments demonstrated that the zinc scaffold displayed no significant cytotoxicity, and loading exosomes enhanced the zinc scaffold's ability to promote osteogenic cell activity while inhibiting osteoclast activity. In vivo experiments on rabbits indicated that the hepatic and renal toxicity of the zinc scaffold decreased over time, and the loading of exosomes alleviated the hepatic and renal toxic effects of the zinc scaffold. Throughout various stages of repairing radial bone defects in rabbits, loading exosomes reinforced the zinc scaffold's capacity to enhance osteogenic cell activity, suppress osteoclast activity, and promote angiogenesis. This effect may be attributed to BF Exo's regulation of p38/STAT1 signaling. This study signifies that the combined treatment of degradable porous zinc scaffolds and BF Exo is an effective and biocompatible strategy for bone defect repair therapy.


Asunto(s)
Regeneración Ósea , Exosomas , Osteogénesis , Impresión Tridimensional , Radio (Anatomía) , Andamios del Tejido , Zinc , Animales , Exosomas/metabolismo , Exosomas/trasplante , Conejos , Radio (Anatomía)/cirugía , Osteogénesis/efectos de los fármacos , Porosidad , Regeneración Ósea/efectos de los fármacos , Masculino
11.
Chem Sci ; 15(22): 8506-8513, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846396

RESUMEN

The modulation of emission color is one of the most critical topics in the research field of organic light-emitting diodes (OLEDs). Currently, only two ways are commonly used to tune the emission colors of OLEDs: one is to painstakingly synthesize different emitters with diverse molecular structures, the other is to precisely control the degree of aggregation or doping concentration of one emitter. To develop a simpler and less costly method, herein we demonstrate a new strategy in which the emission colors of OLEDs can be continuously changed with UV light during the device fabrication process. The proof of concept is established by a chromene-based Ir(iii) complex, which shows bright green emission and yellow emission before and after UV irradiation, respectively. Consequently, under different durations of UV irradiation, the resulting Ir(iii) complex is successfully used as the emitter to gradually tune the emission colors of related solution-processed OLEDs from green to yellow. Furthermore, the electroluminescent efficiencies of these devices are unaffected or even increased during this process. Therefore, this work demonstrates a distinctive point of view and approach for modulating the emission colors of OLEDs, which may prove great inspiration for the fabrication of multi-colored OLEDs with only one emitter.

12.
Transl Oncol ; 46: 102026, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850800

RESUMEN

Thymosin beta 10 (TMSB10) overexpression is a general characteristic in human carcinogenesis. It is involved in the malignant process of generating multiple cancers. However, there are only a few reports about TMSB10 in colorectal cancer (CRC) and the mechanism of its carcinogenetic effect is still poorly understood. The present study intends to clarify the biological roles and carcinogenic mechanism of TMSB10 in CRC and to explore the possibility whether TMSB10 might be useful as a non-invasive serum tumor biomarker in detecting CRC. Immunohistochemical results showed that TMSB10 protein expression in CRC tissues was generally higher than that in adjacent tissues, and the TMSB10 contents in serum of CRC patients was significantly elevated compared to that of healthy controls. Knockdown-TMSB10 increased apoptosis and induced S-cell cycle arrest, and finally inhibited cell proliferation in vitro and in vivo. Transcriptome sequencing and western blotting analysis revealed that knockdown-TMSB10 increased phosphorylation of p38 and activated the p38 pathway that blocked cell cycle and promoted apoptosis. Taken together, our study indicated that TMSB10 could serve as a minimally invasive serum tumor marker in detecting CRC. At the same time it demonstrates an effective regulatory capacity of TMSB10 on cell proliferation of CRC, suggesting that TMSB10 and downstream effector molecules regulated by TMSB10 could further be applied as an appealing target in clinical post-surgery chemotherapy.

13.
Chem Sci ; 15(24): 9112-9119, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903225

RESUMEN

The weak spin-orbit coupling (SOC) in metal-free organic molecules poses a challenge in achieving phosphorescence emission. To attain pure phosphorescence in RTP organic emitters, a promising molecular design concept has been proposed. This involves incorporating n → π* transitions and leveraging the heavy atomic effect within the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC) mechanism of bipolar molecules. Following this design concept, two bipolar metal-free organic molecules (PhSeB and PhSeDB) with donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) configurations have been synthesized. When the molecular configuration changes from D-A to A-D-A, PhSeDB exhibits stronger electron coupling and n → π* transitions, which can further enhance the spin-orbit coupling (SOC) together with the heave atom effect from the selenium atom. By the advanced synergism among enhanced n → π* transitions, heavy atom effect and magnified electron coupling to efficiently promote phosphorescence emission, PhSeDB can achieve pure RTP emission in both the solution and doped solid film. Thanks to the higher spin-orbit coupling matrix elements (SOCMEs) for T1 ↔ S0, PhSeDB attains the highest phosphorescence quantum yield (ca. 0.78) among all the RTP organic emitters reported. Consequently, the purely organic phosphorescent light-emitting diodes (POPLEDs) based on PhSeDB achieve the highest external quantum efficiencies of 18.2% and luminance of 3000 cd m-2. These encouraging results underscore the significant potential of this innovative molecular design concept for highly efficient POPLEDs.

14.
Phytochemistry ; 223: 114120, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705265

RESUMEN

Eleven previously undescribed sesquiterpenoids (8-18), one undescribed jasmonic acid derivative (35) and 28 known compounds were isolated from the leaves of Artemisia stolonifera. Undescribed compounds with their absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction and ECD calculation. Compound 8 was identified as a rare sesquiterpenoid featuring a rearranged 5/8 bicyclic ring system, whereas compound 17 was found to be an unprecedented monocyclic sesquiterpenoid with methyl rearrangement. Evaluation of biological activity showed that compounds 1-5 and 7 displayed cytotoxicity against six tumor cells. In the meantime, compounds 11, 12, 18 and 35 exhibited inhibitory effects against LPS-stimulated NO production in RAW 264.7 macrophage cells and reduced the transcription of IL-6 and IL-1ß in a dose-dependent manner at 25, 50 and 100 µM. Moreover, the anti-inflammatory-based network pharmacology and molecular docking analyses revealed potential target proteins of 11, 12, 18 and 35.


Asunto(s)
Antiinflamatorios , Artemisia , Ciclopentanos , Óxido Nítrico , Oxilipinas , Sesquiterpenos , Artemisia/química , Ratones , Oxilipinas/farmacología , Oxilipinas/química , Oxilipinas/aislamiento & purificación , Animales , Células RAW 264.7 , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Ciclopentanos/química , Ciclopentanos/farmacología , Ciclopentanos/aislamiento & purificación , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Humanos , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Hojas de la Planta/química , Ensayos de Selección de Medicamentos Antitumorales
15.
Org Lett ; 26(21): 4475-4479, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38767291

RESUMEN

Genome mining of Emericella sp. XL-029 achieved a new type E sesterterpene synthase, EmES, which affored a novel bipolyhydroindenol sesterterpene, emerindanol A. Heterologous coexpression with the upstream P450 oxidase revealed C-4 hydroxylated product, emerindanol B. Notably, emerindanols A and B represented the first sesterterpenes featuring a unique 5/6-6/5 coupled ring system. EmES was postulated to initiate through C1-IV-V pathway and convert the fused ring intermediate into the final coupled ring product through a spiro skeleton.


Asunto(s)
Sesterterpenos , Sesterterpenos/química , Estructura Molecular , Emericella/química
16.
Front Plant Sci ; 15: 1291630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606074

RESUMEN

Climate change, characterized by rising atmospheric CO2 levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C4 cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity (I) in sweet sorghum under different temperature and CO2 conditions. Comparative analyses were conducted between the A n-I, g s-I, T r-I, WUEi-I, and WUEinst-I models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUEi) and instantaneous WUE (WUEinst) trends with increasing I. The fitted maximum values of A n, g s, T r, WUEi, and WUEinst and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high R 2 values for A n-I, g s-I, and T r-I modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to I, overestimating WUE. Across different leaf temperatures, A n, g s, and T r of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum A n, g s, and T r but consistently declined maximum WUEi and WUEinst. However, WUEinst declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum A n saturated at current atmospheric CO2 levels, with no significant gains under 550 µmol mol-1. Instead, stomatal closure enhanced WUE under elevated CO2 by coordinated g s and T r reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO2 and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species.

17.
ACS Omega ; 9(13): 15311-15319, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585103

RESUMEN

The primary limitations of the quantitative analysis of thermally labile halogenated compounds by traditional gas chromatography (GC) are the inadequacy of identifying the insufficiently volatile impurity (often with a high boiling point) and the difficulty in obtaining a standard substance with a reliable standardized assay. Taking the 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one (DMDO-Cl, 1) as an example, we reported a triphenylmethanamino-derivatization method to overcome the challenges of the assay determination of such species. During the quantification of 1, the presence of GC-undetectable polymeric impurity 10 poses a critical challenge in assessing the material quality. Moreover, the standard substance of 1 is not available on the market due to its inherent instability during storage and handling, further complicating the quantitative analysis. In this work, a precolumn HPLC-UV derivatization method based on triphenylmethanamino-alkylation was developed to quantitatively analyze 1. The resulting derivative 2 exhibits excellent crystallinity and superior physical and chemical stability and possesses effective chromophores for UV detection. The conversion from analyte 1 to derivative 2 demonstrates desirable reactivity and purity, facilitating quantitative analysis using the external standard method. The chemical derivatization-chromatographic detection method was optimized and validated, demonstrating its high specificity, good linearity, precision, accuracy, and stability. This method offers a valuable alternative to the general quantitative NMR (qNMR) detection technique, which exhibits reduced specificity in the presence of increased levels of impurities in compound 1.

18.
Phys Rev Lett ; 132(11): 116301, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563917

RESUMEN

Recent theoretical and experimental research suggests that θ-TaN is a semimetal with high thermal conductivity (κ), primarily due to the contribution of phonons (κ_{ph}). By using first-principles calculations, we show a nonmonotonic pressure dependence of the κ of θ-TaN. κ_{ph} first increases until it reaches a maximum at around 60 GPa, and then decreases. This anomalous behavior is a consequence of the competing pressure responses of phonon-phonon and phonon-electron interactions, in contrast to the known materials BAs and BP, where the nonmonotonic pressure dependence is caused by the interplay between different phonon-phonon scattering channels. Although TaN has phonon dispersion features similar to BAs at ambient pressure, its response to pressure is different and an overall stiffening of the phonon branches takes place. Consequently, the relevant phonon-phonon scattering weakens as pressure increases. However, the increased electronic density of states near the Fermi level, and specifically the emergence of additional pockets of the Fermi surface at the high-symmetry L point in the Brillouin zone, leads to a substantial increase in phonon-electron scattering at high pressures, driving a decrease in κ_{ph}. At intermediate pressures (∼20-70 GPa), the κ of TaN surpasses that of BAs. Our Letter provides deeper insight into phonon transport in semimetals and metals where phonon-electron scattering is relevant.

19.
Heliyon ; 10(8): e29567, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681656

RESUMEN

XIAP, or the X-linked Inhibitor of Apoptosis Protein, is the most extensively studied member within the IAP gene family. It possesses the capability to impede apoptosis through direct inhibition of caspase activity. Various kinds of cancers overexpress XIAP to enable cancer cells to avoid apoptosis. Consequently, the inhibition of XIAP holds significant clinical implications for the development of anti-tumor medications and the treatment of cancer. In this study, sterigmatocystin, a natural compound obtained from the genus asperigillus, was demonstrated to be able to induce apoptotic and autophagic cell death in liver cancer cells. Mechanistically, sterigmatocystin induces apoptosis by downregulation of XIAP expression. Additionally, sterigmatocystin treatment induces cell cycle arrest, blocks cell proliferation, and slows down colony formation in liver cancer cells. Importantly, sterigmatocystin exhibits a remarkable therapeutic effect in a nude mice model. Our findings revealed a novel mechanism through which sterigmatocystin induces apoptotic and autophagic cell death of liver cancer cells by suppressing XIAP expression, this offers a promising therapeutic approach for treating liver cancer patients.

20.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612874

RESUMEN

The Hippo pathway plays crucial roles in governing various biological processes during tumorigenesis and metastasis. Within this pathway, upstream signaling stimuli activate a core kinase cascade, involving MST1/2 and LATS1/2, that subsequently phosphorylates and inhibits the transcriptional co-activators YAP and its paralog TAZ. This inhibition modulates the transcriptional regulation of downstream target genes, impacting cell proliferation, migration, and death. Despite the acknowledged significance of protein kinases in the Hippo pathway, the regulatory influence of protein phosphatases remains largely unexplored. In this study, we conducted the first gain-of-functional screen for protein tyrosine phosphatases (PTPs) regulating the Hippo pathway. Utilizing a LATS kinase biosensor (LATS-BS), a YAP/TAZ activity reporter (STBS-Luc), and a comprehensive PTP library, we identified numerous novel PTPs that play regulatory roles in the Hippo pathway. Subsequent experiments validated PTPN12, a master regulator of oncogenic receptor tyrosine kinases (RTKs), as a previously unrecognized negative regulator of the Hippo pathway effectors, oncogenic YAP/TAZ, influencing breast cancer cell proliferation and migration. In summary, our findings offer valuable insights into the roles of PTPs in the Hippo signaling pathway, significantly contributing to our understanding of breast cancer biology and potential therapeutic strategies.


Asunto(s)
Neoplasias , Monoéster Fosfórico Hidrolasas , Vía de Señalización Hippo , Genes Reguladores , Transducción de Señal , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA