Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 759
1.
Adv Sci (Weinh) ; : e2402208, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704692

Surgical resection remains the mainstream treatment for malignant melanoma. However, challenges in wound healing and residual tumor metastasis pose significant hurdles, resulting in high recurrence rates in patients. Herein, a bioactive injectable hydrogel (BG-Mngel) formed by crosslinking sodium alginate (SA) with manganese-doped bioactive glass (BG-Mn) is developed as a versatile platform for anti-tumor immunotherapy and postoperative wound healing for melanoma. The incorporation of Mn2+ within bioactive glass (BG) can activate the cGAS-STING immune pathway to elicit robust immune response for cancer immunotherapy. Furthermore, doping Mn2+ in BG endows system with excellent photothermal properties, hence facilitating STING activation and reversing the tumor immune-suppressive microenvironment. BG exhibits favorable angiogenic capacity and tissue regenerative potential, and Mn2+ promotes cell migration in vitro. When combining BG-Mngel with anti-PD-1 antibody (α-PD-1) for the treatment of malignant melanoma, it shows enhanced anti-tumor immune response and long-term immune memory response. Remarkably, BG-Mngel can upregulate the expression of genes related to blood vessel formation and promote skin tissue regeneration when treating full-thickness wounds. Overall, BG-MnGel serves as an effective adjuvant therapy to regulate tumor metastasis and wound healing for malignant melanoma.

2.
Article En | MEDLINE | ID: mdl-38759839

BACKGROUND & AIMS: The immune tolerance induced by Hepatitis B virus (HBV) is a major challenge for achieving effective viral clearance, and the mechanisms involved are not well understood. One potential factor involved in modulating immune responses is mesencephalic astrocyte-derived neurotrophic factor (MANF), which has been reported to be increased in patients with chronic hepatitis B. In this study, our objective is to examine the role of MANF in regulating immune responses to HBV. METHODS: We utilized a commonly used HBV-harboring mouse model, where mice were hydrodynamically injected with the pAAV/HBV1.2 plasmid. We assessed the HBV load by measuring the levels of various markers including HBsAg, HBeAg, HBcAg, HBV DNA, and HBV RNA. RESULTS: Our study revealed that following HBV infection, both myeloid cells and hepatocytes exhibited increased expression of MANF. Moreover, we observed that mice with myeloid-specific MANF knockout (ManfMye-/-) displayed reduced HBV load and improved HBV-specific T cell responses. The decreased HBV-induced tolerance in ManfMye-/- mice was associated with reduced accumulation of myeloid-derived suppressor cells (MDSCs) in the liver. Restoring MDSC levels in ManfMye-/- mice through MDSC adoptive transfer reinstated HBV-induced tolerance. Mechanistically, we found that MANF promoted MDSC expansion by activating the IL-6/STAT3 pathway. Importantly, our study demonstrated the effectiveness of a combination therapy involving an HBsAg vaccine and nanoparticle-encapsulated MANF siRNA in effectively clearing HBV in HBV-carrier mice. CONCLUSION: The current study reveals that MANF plays a previously unrecognized regulatory role in liver tolerance by expanding MDSCs in the liver through IL-6/ STAT3 signaling, leading to MDSC-mediated CD8+ T cell exhaustion.

3.
Talanta ; 275: 126170, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38703478

Rapid and quantitative detection of isoquercitrin (Isq) has been attracting much attention due to its outstanding pharmacological and physiological activities. Herein, an interesting 48-metal Zn(II)-Nd(III) nanocluster (1, molecular sizes 1.3 × 2.8 × 3.1 nm) with salen-type Schiff base ligand was constructed as molecular sensor for the luminescence detection of Isq. 1 exhibits visible ligand-centered emission and NIR luminescence of Nd(III), and shows ratiometric fluorescence response to Isq with high sensitivity even in the presence of other interferences. The fluorescence sensing behavior can be expressed by a second-order equation I1060nm/I480nm = A*[Isq]2 + B*[Isq] + C, which is used to quantitatively analyze the Isq concentrations in DMF and FCS. The LODs to Isq for the ligand-centered and lanthanide emissions of 1 in DMF are 0.21 µM and 0.11 nM, respectively. The quenching of the ligand-centered emission of 1 caused by Isq is attributed to the competitive absorption of light energy and "inner effect", while, the luminescence enhancement is due to the "antenna effect".

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124468, 2024 May 16.
Article En | MEDLINE | ID: mdl-38761475

Rapid and quantitative detection of 2,4,6-trinitrophenol (TNP) is very crucial for homeland security, military application, and environment protection. Herein, a nine-metal Zn(II)-Nd(III) nanoring 1 with a diameter of 2.3 nm was constructed by the use of a long-chain Schiff base ligand, which shows ratiometric fluorescence response to TNP with high selectivity and sensitivity. The fluorescence sensing behavior of 1 to TNP is expressed by a first-order equation I1060nm/I560nm = -0.0128*[TNP] + 0.9723, which can be used to quantitatively analyze TNP concentrations in solution. The limits of detection (LODs) to TNP based on the ligand-centered (LC) and Nd(III) emissions of 1 are 5.93 µM and 3.18 µM, respectively. The fluorescence response mechanism to TNP is attributed to the competitive absorption effect and photoinduced electron transfer (PET). The luminescence quenching of 1 is dominated by static process.

5.
Front Plant Sci ; 15: 1387350, 2024.
Article En | MEDLINE | ID: mdl-38751836

Introduction: Accurate detection of potato seedlings is crucial for obtaining information on potato seedlings and ultimately increasing potato yield. This study aims to enhance the detection of potato seedlings in drone-captured images through a novel lightweight model. Methods: We established a dataset of drone-captured images of potato seedlings and proposed the VBGS-YOLOv8n model, an improved version of YOLOv8n. This model employs a lighter VanillaNet as the backbone network in-stead of the original YOLOv8n model. To address the small target features of potato seedlings, we introduced a weighted bidirectional feature pyramid network to replace the path aggregation network, reducing information loss between network layers, facilitating rapid multi-scale feature fusion, and enhancing detection performance. Additionally, we incorporated GSConv and Slim-neck designs at the Neck section to balance accuracy while reducing model complexity. Results: The VBGS-YOLOv8n model, with 1,524,943 parameters and 4.2 billion FLOPs, achieves a precision of 97.1%, a mean average precision of 98.4%, and an inference time of 2.0ms. Comparative tests reveal that VBGS-YOLOv8n strikes a balance between detection accuracy, speed, and model efficiency compared to YOLOv8 and other mainstream networks. Specifically, compared to YOLOv8, the model parameters and FLOPs are reduced by 51.7% and 52.8% respectively, while precision and a mean average precision are improved by 1.4% and 0.8% respectively, and the inference time is reduced by 31.0%. Discussion: Comparative tests with mainstream models, including YOLOv7, YOLOv5, RetinaNet, and QueryDet, demonstrate that VBGS-YOLOv8n outperforms these models in terms of detection accuracy, speed, and efficiency. The research highlights the effectiveness of VBGS-YOLOv8n in the efficient detection of potato seedlings in drone remote sensing images, providing a valuable reference for subsequent identification and deployment on mobile devices.

7.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589567

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Hydrazines , Kidney Neoplasms , Triazoles , Wilms Tumor , Humans , Exportin 1 Protein , Active Transport, Cell Nucleus , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Cell Line, Tumor , Apoptosis , Neoplasm Recurrence, Local , Doxorubicin/pharmacology , Wilms Tumor/drug therapy , Wilms Tumor/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism
8.
Inorg Chem ; 63(17): 7613-7618, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38632683

Meloxicam (MLX) is a novel nonsteroidal anti-inflammatory drug, but on the other hand, it has become one of the common microcontaminants in surface waters and sewage. Herein, we report the preparation of a ternary-metal Zn(II)-Cd(II)-Eu(III) nanocluster 1 for the response of MLX through the enhancement of lanthanide luminescence. The luminescence sensing behavior of 1 is expressed by the equation I615nm = 3060 × [MLX] + 46,604, which can be used in the quantitative analysis of MLX concentrations in meloxicam dispersible tablets. Filter paper strips bearing 1 can be used to qualitatively detect MLX by a color change to red under a UV lamp. The luminescence response time is no more than five s, and the detection limit is as low as 2.31 × 10-2 nM.


Anti-Inflammatory Agents, Non-Steroidal , Europium , Meloxicam , Zinc , Meloxicam/analysis , Zinc/chemistry , Zinc/analysis , Europium/chemistry , Anti-Inflammatory Agents, Non-Steroidal/analysis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Luminescent Measurements , Luminescence , Nanostructures/chemistry , Limit of Detection
9.
Korean J Physiol Pharmacol ; 28(3): 219-227, 2024 May 01.
Article En | MEDLINE | ID: mdl-38682170

Bladder cancer remains the 10th most common cancer worldwide. In recent years, metformin has been found to have potential anti-bladder cancer activity while high concentration of IC50 at millimolar level is needed, which could not be reached by regular oral administration route. Thus, higher efficient agent is urgently demanded for clinically treating bladder cancer. Here, by conjugating artesunate to metformin, a novel artesunate-metformin dimer triazine derivative AM2 was designed and synthesized. The inhibitory effect of AM2 on bladder cancer cell line T24 and the mechanism underlying was determined. Anti-tumor activity of AM2 was assessed by MTT, cloning formation and wound healing assays. Decreasing effect of AM2 on lipogenesis was determined by oil red O staining. The protein expressions of Clusterin, SREBP1 and FASN in T24 cells were evaluated by Western blotting. The results show that AM2 significantly inhibited cell proliferation and migration at micromolar level, much higher than parental metformin. AM2 reduced lipogenesis and down-regulated the expressions of Clusterin, SREBP1 and FASN. These results suggest that AM2 inhibits the growth of bladder cancer cells T24 by inhibiting cellular lipogenesis associated with the Clusterin/SREBP1/FASN signaling pathway.

10.
Inorg Chem ; 63(18): 8336-8341, 2024 May 06.
Article En | MEDLINE | ID: mdl-38651971

A cube-like Zn(II)-Eu(III) nanocluster 1 (molecular sizes: 1.8 × 2.0 × 2.0 nm) was constructed by the use of a new long-chain Schiff base ligand. It shows a ratiometric fluorescence response to levofloxacin (LFX) with high sensitivity and selectivity, which can be expressed as I615 nm/I550 nm = A*[LFX]2 + B*[LFX] + C. It is used to quantitatively detect the LFX concentrations in fetal calf serum (FCS) and tablets sold in pharmacy. Filter paper strips bearing 1 can be used to qualitatively detect LFX by a color change to red under a UV lamp. 1 and its hybrid with sodium alginate (SA), 1@SA, display potential applications in the qualitative detection of LFX in FCS and the medicine. The limit of detection of 1 to LFX is as low as 2.1 × 10-2 nM.


Alginates , Europium , Levofloxacin , Zinc , Alginates/chemistry , Zinc/chemistry , Zinc/blood , Levofloxacin/blood , Levofloxacin/analysis , Europium/chemistry , Spectrometry, Fluorescence , Animals , Humans , Cattle , Tablets , Fluorescent Dyes/chemistry
11.
Inorg Chem ; 63(16): 7199-7205, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38602179

A nine-metal Zn(II)-Eu(III) nanoring 1 with a diameter of about 2.3 nm was constructed by the use of a long-chain Schiff base ligand. It shows a luminescence response to neopterin (Neo) through the enhancement of lanthanide emission with high selectivity and sensitivity, which can be used to quantitatively analyze the concentrations of Neo in fetal calf serum and urine. The luminescence sensing of 1 to Neo is temperature-dependent, and it displays more obvious response behavior at lower temperatures. Filter paper strips bearing 1 can be used to qualitatively detect Neo by the color change from chartreuse to red under a UV lamp. The limit of detection is as low as 3.77 × 10-2 nM.


Europium , Nanostructures , Neopterin , Temperature , Zinc , Zinc/chemistry , Zinc/analysis , Neopterin/analysis , Neopterin/urine , Neopterin/blood , Europium/chemistry , Nanostructures/chemistry , Humans , Luminescence , Luminescent Measurements , Biomarkers/analysis , Biomarkers/blood , Limit of Detection , Animals
12.
Front Nutr ; 11: 1334506, 2024.
Article En | MEDLINE | ID: mdl-38487635

Introduction: This paper examines the association between the dietary inflammatory index (DII) and the risk of metabolic syndrome (MS) and its components among Uygur adults in Kashi, Xinjiang. Methods: The study used the multi-stage random cluster sampling method to investigate the adult residents of Uighu aged over 18 years old in one county and one township/street of three cities in Kashi between May and June 2021. All dietary data collected were analyzed for energy and nutrient intake with a nutritional analysis software, followed by a calculation of DII. Logistic regression was used to estimate the association between DII and the risks of MS and its components. Results: The maximum DII value across our 1,193 respondents was 4.570 to 4.058, with an average value of 0.256. When we analyzed the DII as a continuous variable, we determined the anti-inflammatory diet has been identified as a mitigating factor for metabolic syndrome (OR = 0.586, 95% CI = 0.395-0.870), obesity (OR = 0.594, 95% CI = 0.395-0.870), elevated fasting glucose levels (OR = 0.422, 95% CI = 0.267-0.668), and hypertension (OR = 0.698, 95% CI = 0.488-0.996). When the model was adjusted by sex, age, and occupation, we found a significant correlation between high- and low-density lipoproteinemia and DII (OR = 1.55, 95% CI = 1.040-2.323). The present study identified four distinct dietary patterns among the population under investigation. There was a linear trend in the incidence of MS and hypertension across low, middle, and high levels of fruits and milk dietary pattern model (p = 0.027; p = 0.033), within this dietary pattern may serve as protective factors against MS and hypertension, suggesting that fruits and milk within this dietary pattern may serve as protective factors against MS and hypertension. And the linear trend in the incidence of elevated fasting glucose and obesity across the low, medium, and high scores of meet and eggs dietary pattern (p = 0.006; p < 0.001), suggest that a diet rich in meat may potentially contribute to an increased risk of developing elevated fasting glucose levels and obesity. An observed linear trend in the incidence rate of high fasting blood glucose across low, moderate, and high scores of dried fruits and nuts dietary pattern (p = 0.014), indicating that increased consumption of nuts acted as a protective factor against elevated fasting blood glucose levels and contributed to their reduction. Discussion: The dietary inflammation index was integrated with the findings from the study on the dietary patterns of the sampled population, revealing that an anti-inflammatory diet demonstrated a protective effect against metabolic syndrome, obesity, high fasting blood glucose, and hypertension in this specific population. laying the foundation for further research.

13.
Am J Transl Res ; 16(2): 458-465, 2024.
Article En | MEDLINE | ID: mdl-38463576

OBJECTIVE: To construct and evaluate a nomogram prediction model for the risk of diabetic foot in patients with type 2 diabetes based on their clinical data, and to assist clinical healthcare professionals in identifying high-risk factors and developing targeted intervention measures. METHODS: We retrospectively collected clinical data from 478 hospitalized patients with type 2 diabetes at the First Affiliated Hospital of Shantou University Medical College from January 2019 to December 2021. The patients were divided into a diabetic foot group (n=312) and a non-diabetic foot group (n=166) based on whether they had diabetic foot. The baseline data of both groups were collected. Univariate and multivariate analyses as well as logistic regression analysis were conducted to explore the risk factors for diabetic foot. A nomogram prediction model was established using the package "rms" version 4.3. The model was internally validated using the area under the receiver operating characteristic curve (AUC). Additionally, the decision curve analysis (DCA) was performed to evaluate the performance of the nomogram model. RESULTS: The results from the logistic regression analysis revealed that being male, smoking, duration of diabetes, glycated hemoglobin, hyperlipidemia, and atherosclerosis were influencing factors for diabetic foot (all P<0.05). The AUC of the model in predicting diabetic foot was 0.804, with a sensitivity of 75.3% and specificity of 74.4%. Harrell's C-index of the nomogram prediction model for diabetic foot was 0.804 (95% CI: 0.762-0.844), with a threshold value of >0.675. The DCA findings demonstrated that the nomogram model provided a net clinical benefit. CONCLUSION: The nomogram prediction model constructed in this study showed good predictive performance and can provide a basis for clinical workers to prevent and intervene in diabetic foot, thereby improving the overall diagnosis and treatment.

14.
Artif Intell Med ; 150: 102825, 2024 Apr.
Article En | MEDLINE | ID: mdl-38553165

Peripancreatic vessel segmentation and anatomical labeling are pivotal aspects in aiding surgical planning and prognosis for patients with pancreatic tumors. Nevertheless, prevailing techniques often fall short in achieving satisfactory segmentation performance for the peripancreatic vein (PPV), leading to predictions characterized by poor integrity and connectivity. Besides, unsupervised labeling algorithms usually cannot deal with complex anatomical variation while fully supervised methods require a large number of voxel-wise annotations for training, which is very labor-intensive and time-consuming. To address these two problems, we propose an Automated Peripancreatic vEssel Segmentation and lAbeling (APESA) framework, to not only highly improve the segmentation performance for PPV, but also efficiently identify the peripancreatic artery (PPA) branches. There are two core modules in our proposed APESA framework: iterative trunk growth module (ITGM) for vein segmentation and weakly supervised labeling mechanism (WSLM) for artery labeling. The ITGM is composed of a series of iterative submodules, each of which chooses the largest connected component of the previous PPV segmentation as the trunk of a tree structure, seeks for the potential missing branches around the trunk by our designed branch proposal network, and facilitates trunk growth under the connectivity constraint. The WSLM incorporates the rule-based pseudo label generation with less expert participation, an anatomical labeling network to learn the branch distribution voxel by voxel, and adaptive radius-based postprocessing to refine the branch structures of the labeling predictions. Our achieved Dice of 94.01% for PPV segmentation on our collected dataset represents an approximately 10% accuracy improvement compared to state-of-the-art methods. Additionally, we attained a Dice of 97.01% for PPA segmentation and competitive labeling performance for PPA labeling compared to prior works. Our source codes will be publicly available at https://github.com/ZouLiwen-1999/APESA.


Algorithms , Pancreatic Neoplasms , Humans , Learning , Pancreatic Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted , Supervised Machine Learning
15.
Nat Commun ; 15(1): 2742, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548752

The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.


Glioblastoma , Lung Neoplasms , Humans , Glioblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation
16.
J Colloid Interface Sci ; 664: 882-892, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38493653

The active cyano-group in polyacrylonitrile has severe passivation of lithium anode under larger current density, which restricts the wide application of polyacrylonitrile(PAN) in lithium metal batteries. Herein, in order to address the excessive passivation of lithium metal by PAN, inspired by the pre-oxidation of carbon fibers, PAN was pre-oxidized at 230 °C, which transformed part of the cyano group into a more chemically stable cyclized structure. The electrochemical and mechanical properties of the composite solid electrolyte were effectively improved by introducing the fast ionic conductor Li6.25La3Zr2Al0.25O12 into PAN by electrospinning. The oxidized PAN-based composite solid electrolyte presents high ionic conductivity (3.05 × 10-3 S·cm-1) and high lithium transference number of 0.79 at 25 °C, further contributing to a high electrochemical window (5.3 V). The solid-state batteries assembled by Li||10 wt%-LLZAO@230-oxy-PAN||NCM523 behave superb electrochemical performance, delivering a high initial discharge capacity of 157 mAh g-1 at 0.2 C. After 100 cycles, the capacity retention was 93.3 %, indicating the electrolyte displays great electrochemical stability. This work provides new insights into the structural design of polymer-based high-voltage batteries.

17.
J Sci Food Agric ; 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38380915

BACKGROUND: Citrus flower-green tea (CT) is a scented tea processed from green tea (GT) and fresh citrus flower, which is favored by consumers due to its potential health benefits and unique citrus flavor. This study evaluated the quality of CT and revealed the mechanism of its quality formation. RESULTS: The CT had a significant citrus flavor and a good antioxidant activity, and its sensory quality was superior to that of GT. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis revealed that the scenting process resulted in a significant increase of alkenes such as ß-pinene, trans-ß-ocimene, α-farnesene, isoterpinolene, and γ-terpinene, as well as a significant decrease of alcohols such as α-terpineol, l-menthol, and linalool in CT in comparison with GT. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that the levels of flavonoids (such as neohesperidin, hesperidin, tangeritin, hesperetin 5-O-glucoside, and nobiletin) and alkaloids (such as trigonelline and theobromine) in CT increased significantly after scenting process, while the levels of amino acids (such as valine and l-phenylalanine) and organic acids (such as ascorbic acid) decreased significantly. CONCLUSION: These observations showed that the scenting process promoted the absorption of aroma from citrus flowers by GT and the changes in its non-volatile metabolites, leading to the formation of citrus flavor quality in CT. © 2024 Society of Chemical Industry.

18.
Phytomedicine ; 127: 155392, 2024 May.
Article En | MEDLINE | ID: mdl-38412575

BACKGROUND: Tiliroside (TIL) is a flavonoid compound that exists in a variety of edible plants. These dietary plants are widely used as food and medicine to treat various diseases. However, the effect of TIL on pancreatic cancer (PC) and its underlying mechanisms are unclear. PURPOSE: This study aims to reveal the anti-PC effect of TIL and clarify its mechanism. METHODS: The inhibitory effects of TIL on PC growth were studied both in vitro and in vivo. Flow cytometry, transmission electron microscopy, immunofluorescence, biochemical analyses, RT-qPCR, genetic ablation, and western blotting were employed to evaluate ferroptosis, autophagy, and iron regulation. Additionally, RNA sequencing (RNA-seq), biomolecular layer interferometry (BLI), and molecular simulation analysis were combined to identify TIL molecular targets. The clinicopathological significance of Calpain-2 (CAPN2) was determined through immunohistochemistry (IHC) on a PC tissue microarray. RESULTS: Herein, we showed that TIL was an effective anti-PC drug. CAPN2 was involved in the TIL - induced elevation of the labile iron pool (LIP) in PC cells. TIL directly bound to and inhibited CAPN2 activity, resulting in AKT deactivation and decreased expression of glucose transporters (GLUT1 and GLUT3) in PC cells. Consequently, TIL impaired ATP and NADPH generation, inducing autophagy and ROS production. The accumulation of TIL-induced ROS combined with LIP iron causes the Fenton reaction, leading to lipid peroxidation. Meanwhile, TIL-induced reduction of free iron ions promoted autophagic degradation of ferritin to regulate cellular iron homeostasis, which further exacerbated the death of PC cells by ferroptosis. As an extension of these in vitro findings, our murine xenograft study showed that TIL inhibited the growth of PANC-1 cells. Additionally, we showed that CAPN2 expression levels were related to clinical prognoses in PC patients. CONCLUSION: We identify TIL as a potent bioactive inhibitor of CAPN2 and an anti-PC candidate of natural origin. These findings also highlight CAPN2 as a potential target for PC treatment.


Ferroptosis , Pancreatic Neoplasms , Humans , Animals , Mice , Calpain/genetics , Calpain/pharmacology , Reactive Oxygen Species/metabolism , Flavonoids/pharmacology , Pancreatic Neoplasms/pathology , Iron/metabolism , Homeostasis
19.
Anal Methods ; 16(9): 1357-1362, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38344752

Exosomal microRNA (miRNA) is a potential biomarker for cancer diagnosis, metastasis, and treatment. In situ detection of exosomal miRNA is an attractive option due to its simplicity and high accuracy. However, in situ exosomal miRNA detection has encountered challenges because of the low target abundance of targets and limited probe permeability. Herein, a label-free and activatable biosensor was developed for in situ exosomal miRNA assays by utilizing hairpin-shaped nucleic acid probes and DNA-hosted silver nanoclusters (DNA-AgNCs). The probe is directly internalized into the exosomes, and then hybridized with the target miRNA-21. Subsequently, the DNA-AgNCs are pulled closer to the G-rich sequence, ultimately leading to in situ red fluorescence activation. The biosensor not only can detect exosomal miRNA-21 but also distinguish cancer cells from normal cells. Under optimal reaction conditions, the detection limit (LOD) of exosomal miRNA-21 is 1.53 × 107 particles per mL. Furthermore, DNA-AgNCs are used as label-free signal elements for in situ detection of exosomal miRNAs for the first time, expanding the application of nanomaterials in this field. This strategy does not require tedious RNA extraction steps and expensive instruments, and may develop into a non-invasive diagnostic tool for ovarian cancer.


Biosensing Techniques , MicroRNAs , MicroRNAs/genetics , Spectrometry, Fluorescence , DNA , Nucleic Acid Probes
20.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 4-8, 2024 Feb 18.
Article Zh | MEDLINE | ID: mdl-38318889

Oral diseases concern almost every individual and are a serious health risk to the population. The restorative treatment of tooth and jaw defects is an important means to achieve oral function and support the appearance of the contour. Based on the principle of "learning from the nature", Deng Xuliang's group of Peking University School and Hospital of Stomatology has proposed a new concept of "microstructural biomimetic design and tissue adaptation of tooth/jaw materials" to address the worldwide problems of difficulty in treating dentine hypersensitivity, poor prognosis of restoration of tooth defects, and vertical bone augmentation of alveolar bone after tooth loss. The group has broken through the bottleneck of multi-stage biomimetic technology from the design of microscopic features to the enhancement of macroscopic effects, and invented key technologies such as crystalline/amorphous multi-level assembly, ion-transportation blocking, and multi-physical properties of the micro-environment reconstruction, etc. The group also pioneered the cationic-hydrogel desensitizer, digital stump and core integrated restorations, and developed new crown and bridge restorative materials, gradient functionalisation guided tissue regeneration membrane, and electrically responsive alveolar bone augmentation restorative membranes, etc. These products have established new clinical strategies for tooth/jaw defect repair and achieved innovative results. In conclusion, the research results of our group have strongly supported the theoretical improvement of stomatology, developed the technical system of oral hard tissue restoration, innovated the clinical treatment strategy, and led the progress of the stomatology industry.


Bionics , Dental Restoration, Permanent , Mouth Diseases , Humans
...