Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(7): 1-10, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38858095

RESUMEN

Alveolar echinococcosis (AE) is a persistent parasite condition that causes the formation of tumorlike growths. It is a challenge to treat the disease. These growths need neovascularization to get their oxygen and nutrients, and the disease is prolonged and severe. Considerable research has been conducted on exosomes and their interactions with Echinococcus multilocularis in the context of immunological evasion by the host. However, the extent of their involvement in angiogenesis needs to be conducted. The primary objective of this investigation was to preliminarily explore the effect of exosomes produced from E. multilocularis protoscoleces (PSC-exo) on angiogenesis, to elucidate the mechanism of their roles in the regulation of the downstream pathway of VEGFA activation, and to provide ideas for the development of novel treatments for AE. The study evaluated the impact of PSC-exo increases proliferation, migration, invasion, and tube formation of HUVECs at concentrations of up to 50 µg/ml. In addition, the study sought to validate the findings in vivo. This effect involved increased VEGFA expression at gene and protein levels and AKT/mTOR pathway activation. PSC-exo are crucial in promoting angiogenesis through VEGFA upregulation and AKT/mTOR signaling. This research contributes to our knowledge of neovascularization in AE.

2.
Acta Trop ; 255: 107247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729330

RESUMEN

Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic ß-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.


Asunto(s)
Echinococcus multilocularis , Proteínas de Unión a Ácidos Grasos , Proteínas del Helminto , Macrófagos , Fagocitosis , Animales , Echinococcus multilocularis/genética , Echinococcus multilocularis/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Ratones , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas del Helminto/inmunología , Óxido Nítrico/metabolismo , Apoptosis , Citocinas/metabolismo , Células RAW 264.7
3.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836989

RESUMEN

Linguistic knowledge helps a lot in scene text recognition by providing semantic information to refine the character sequence. The visual model only focuses on the visual texture of characters without actively learning linguistic information, which leads to poor model recognition rates in some noisy (distorted and blurry, etc.) images. In order to address the aforementioned issues, this study builds upon the most recent findings of the Vision Transformer, and our approach (called Display-Semantic Transformer, or DST for short) constructs a masked language model and a semantic visual interaction module. The model can mine deep semantic information from images to assist scene text recognition and improve the robustness of the model. The semantic visual interaction module can better realize the interaction between semantic information and visual features. In this way, the visual features can be enhanced by the semantic information so that the model can achieve a better recognition effect. The experimental results show that our model improves the average recognition accuracy on six benchmark test sets by nearly 2% compared to the baseline. Our model retains the benefits of having a small number of parameters and allows for fast inference speed. Additionally, it attains a more optimal balance between accuracy and speed.

4.
Angew Chem Int Ed Engl ; 62(34): e202306475, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37367201

RESUMEN

In recent years, pure organic room-temperature phosphorescence (RTP) with highly efficient and long-persistent afterglow has drawn substantial awareness. Commonly, spin-orbit coupling can be improved by introducing heavy atoms into pure-organic molecules. However, this strategy will simultaneously increase the radiative and non-radiative transition rate, further resulting in dramatic decreases in the excited state lifetime and afterglow duration. Here in this work, a highly symmetric bird-like structure tetraphenylene (TeP), and its three symmetrical halogenated derivatives (TeP-F, TeP-Cl and TeP-Br) are synthesized, while their RTP properties and mechanisms are systematically investigated by both theoretical and experimental approaches. As the results, the rigid, highly twisted conformation of TeP restricts the non-radiative processes of RTP and gives rise to the enhancement of electron-exchange, which can contribute to the RTP radiation process. Despite the faint RTP of the bromine and chlorine-substituted ones (TeP-Br, TeP-Cl), the fluoro-substituted TeP-F exhibited a long phosphorescent lifetime up to 890 ms, corresponding to an extremely long RTP afterglow over 8 s, which could be incorporated into the best series of non-heavy-atom RTP materials reported in previous literature.

5.
Pharmaceutics ; 14(9)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36145556

RESUMEN

Patients undergoing immunotherapy always exhibit a low-response rate due to tumor heterogeneity and immune surveillance in the tumor. Angiogenesis plays an important role in affecting the status of tumor-infiltrated lymphocytes by inducing hypoxia and acidosis microenvironment, suggesting its synergistic potential in immunotherapy. However, the antitumor efficacy of singular anti-angiogenesis therapy often suffers from failure in the clinic due to the compensatory pro-angiogenesis signaling pathway. In this work, classic injectable thermosensitive PLGA-PEG-PLGA copolymer was used to construct a platform to co-deliver CA4P (vascular disruptive agent) and EPI for inducing immunogenic cell death of cancer cells by targeting the tumor immune microenvironment. Investigation of 4T1 tumor-bearing mouse models suggests that local administration of injectable V+E@Gel could significantly inhibit the proliferation of cancer cells and prolong the survival rate of 4T1 tumor-bearing mouse models. Histological analysis further indicates that V+E@Gel could effectively inhibit tumor angiogenesis and metastasis by down-regulating the expression of CD34, CD31, MTA1 and TGF-ß. Moreover, due to the sustained release kinetics of V+E@Gel, its local administration relieves the immune surveillance in tumor tissues and thus induces a robust and long-lasting specific antitumor immune response. Overall, this work provides a new treatment strategy through the mediation of the tumor immune microenvironment by vascular disruption to fulfill enhanced chemotherapy and immunotherapy.

6.
Materials (Basel) ; 15(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35208065

RESUMEN

In this study, Friction plug welding (FPW) for 8 mm thickness AA2219-T87 sheets were carried out, and defect-free joints were obtained. The geometric size of plug and plate hole, rotational speed and welding force exhibit significant effects on the weld formation. Meanwhile, it is concluded that significant inhomogeneity of microstructure and mechanical properties exists in FPW joints. The recrystallization zone has the highest mechanical properties owing to the fine equiaxed grains and uniformly distributed θ precipitates. The entire plug, thermo-mechanically affected zone and nugget thermo-mechanically affected zone closed to the bonding interface are significantly softened due to the deformation of the grains and θ' precipitate dissolution. The ultimate tensile strength (UTS) and elongation of the FPW joints can reach 359 MPa and 7.3% at 77 K and 305 MPa and 5% at 298 K, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA