Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Front Pharmacol ; 15: 1347970, 2024.
Article En | MEDLINE | ID: mdl-38694911

Cartilage damage and synovial inflammation are vital pathological changes in osteoarthritis (OA). Biqi Capsule, a traditional Chinese medicine formula used for the clinical treatment of arthritis in China, yields advantages in attenuating OA progression. The drawback here is that the bioactive components and pharmacological mechanisms by which Biqi Capsule exerts its anti-inflammatory and chondroprotective effects have yet to be fully clarified. For in vivo studies, a papain-induced OA rat model was established to explore the pharmacological effects and potential mechanisms of Biqi Capsule against OA. Biqi Capsule alleviated articular cartilage degeneration and chondrocyte damage in OA rats and inhibited the phosphorylation of NF-κB and the expression of pro-inflammatory cytokines in synovial tissue. Network pharmacology analysis suggested that the primary biological processes regulated by Biqi Capsule are inflammation and oxidative stress, and the critical pathway regulated is the PI3K/AKT signaling pathway. The result of this analysis was later verified on SW1353 cells. The in vitro studies demonstrated that Glycyrrhizic Acid and Liquiritin in Biqi Capsule attenuated H2O2-stimulated SW1353 chondrocyte damage via activation of PI3K/AKT/mTOR pathway. Moreover, Biqi Capsule alleviated inflammatory responses in LPS-stimulated RAW264.7 macrophages via the NF-κB/IL-6 pathway. These observations were suggested to have been facilitated by Brucine, Liquiritin, Salvianolic Acid B, Glycyrrhizic Acid, Cryptotanshinone, and Tanshinone ⅡA. Put together, this study partially clarifies the pharmacological mechanisms and the bioactive components of Biqi capsules against OA and suggests that it is a promising therapeutic option for the treatment of OA. Chemical compounds studied in this article. Strychnine (Pubchem CID:441071); Brucine (Pubchem CID:442021); Liquiritin (Pubchem CID:503737); Salvianolic Acid B (Pubchem CID:6451084); Glycyrrhizic Acid (Pubchem CID:14982); Cryptotanshinone (Pubchem CID:160254); Tanshinone ⅡA (Pubchem CID:164676).

2.
Anim Sci J ; 95(1): e13951, 2024.
Article En | MEDLINE | ID: mdl-38703069

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Adipocytes , Adipogenesis , Buffaloes , Cell Differentiation , Cell Proliferation , Fatty Acid-Binding Proteins , PPAR gamma , RNA, Long Noncoding , Animals , Buffaloes/genetics , Buffaloes/metabolism , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Gene Expression , Cells, Cultured , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Food Quality
3.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777957

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Benzhydryl Compounds , Brain , DNA Methylation , Epigenesis, Genetic , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Epigenesis, Genetic/drug effects , Male , Mice , Brain/metabolism , Brain/drug effects , DNA Methylation/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Mice, Inbred C57BL
4.
Discov Oncol ; 15(1): 197, 2024 May 30.
Article En | MEDLINE | ID: mdl-38814491

Breast cancer is a prevalent malignant tumor among women with an increasing incidence rate annually. Breast cancer stem cells (BCSCs) are integral in impeding tumor advancement and addressing drug resistance. Bestatin serves as an adjuvant chemotherapy, triggering apoptosis in cancer cells. In this study, the effects of bestatin on sorted BCSCs from breast cancer cell lines have been studied. Our results indicated that bestatin inhibits the migration and proliferation of breast cancer cells by reducing the stemness of BCSCs both in vitro and in vivo. Puromycin-sensitive aminopeptidase is implicated in the process through the regulation of cell cycle, resulting in heightened cell apoptosis and diminished cell proliferation of BCSCs. Our study suggest that targeting cancer stem cell may offer a promising approach in breast cancer treatment, presenting noval therapeutic strategies for patients with breast cancer.

5.
J Environ Manage ; 360: 121098, 2024 Jun.
Article En | MEDLINE | ID: mdl-38776657

Remediation activities, particularly in megasites, may induce substantial secondary environmental impacts that must be addressed for green and sustainable remediation (GSR) practices. Only limited studies are available quantitatively assessing the environmental footprint and environmental benefits of implementing Best Management Practices (BMPs) in megasite remediation. This study used the SiteWise™ tool, a quantitative environmental footprint assessment for scenario simulation and benefit quantification of BMPs, on a contaminated megasite in Hebei Province, China. We observed a considerable environmental footprint and energy from the remediation. Taking the final implementation alternative (Alt 1) as an example, which is characterized by combining multiple remediation techniques, the greenhouse gas (GHG) emissions reached 113,474 t, the energy used was 2,082,841 million metric British thermal units (MMBTU), and other air pollutant emissions (NOx, SOx, and PM10) amounted to 856 t. Further BMP analyses highlighted the benefits of substituting the conventional solidification/stabilization agent with willow woodchip-based biochar, which could reduce GHG emissions by 50,806 t and energy used by 926,648 MMBTU. The overall environmental benefits of implementing all applicable BMPs in the remediation were significant, with a 66.85%, 50.15%, and 56.05% reduction in GHG emissions, energy used, and other air pollutants, respectively. Our study provides insights into quantifying the environmental footprint and exploring emission reduction pathways for contaminated megasite remediation. It also offers a feasible path for quantifying the environmental benefits of BMPs, promoting the development of GSR of contaminated sites.


Environmental Restoration and Remediation , Environmental Restoration and Remediation/methods , China , Greenhouse Gases/analysis
6.
Talanta ; 274: 126063, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38599124

Hypochlorite (ClO-), as one of reactive oxygen species (ROS), is closely linked to various illnesses and is essential for the proper functioning of immune system. Hence, monitoring and assessing ClO- levels in organisms are extremely important for the clinical diagnosis of ClO--related disorders. In this study, a novel ClO--selective fluorescent probe, DCP-ClO, was synthesized with dicyanoisophorone-xanthene unit as parent fluorophore, which displayed excellent selectivity towards ClO-, near-infrared emission (755 nm), large Stokes shift (100 nm), real-time response to ClO-, high sensitivity (LOD = 3.95 × 10-8 M), and low cytotoxicity. The recognition mechanism of DCP-ClO towards ClO- was confirmed to be a typical ICT process by HPLC-MS, HR-MS, 1H NMR and theoretical calculations. Meanwhile, DCP-ClO demonstrated remarkable efficacy in monitoring ClO- levels in water samples and eye-catching ability in imaging endogenous/exogenous ClO- in living organisms, which verified its potential as a powerful tool for the recognition of ClO- in complex biological systems.


Fluorescent Dyes , Hypochlorous Acid , Hypochlorous Acid/analysis , Hypochlorous Acid/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Animals , Optical Imaging , Infrared Rays , Mice
7.
BMC Infect Dis ; 24(1): 335, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509522

BACKGROUND: Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS: To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. RESULTS: Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. CONCLUSIONS: Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS.


Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells , Signal Transduction , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/therapy
8.
Anal Chem ; 96(9): 3772-3779, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38372636

Development of new near-infrared fluorophores is one of the eternal themes in the field of biosensing and biological imaging. In this work, we constructed a novel fluorophore platform MOR by replacing methylindole of hemicyanine fluorophore (CyR) with benzoxazole to acquire better fluorescence characteristics. Based on the platform, a near infrared (NIR) fluorescent probe MOR-CES2 was synthesized for the specific "off-on" response to carboxylesterase 2 (CES2). The probe exhibited excellent properties including near-infrared emission (735 nm), large Stokes shift (105 nm), high sensitivity (LOD, 0.3 ng/mL), and rapid response (15 min). The successful application of MOR-CES2 in biological imaging of CES2 in mice with thyroid cancer and inflammatory bowel disease demonstrated that the probe could identify cancer cells and tissues and sensitively respond to inflammation. The results proved the potency of MOR-CES2 as an efficient imaging tool to assist in the surgical resection of CES2-related tumors.


Fluorescent Dyes , Thyroid Neoplasms , Mice , Animals , Optical Imaging/methods , Thyroid Neoplasms/diagnostic imaging , Infrared Rays
9.
Genes (Basel) ; 15(2)2024 Jan 27.
Article En | MEDLINE | ID: mdl-38397156

In the Suidae family, warthogs show significant survival adaptability and trait specificity. This study offers a comparative genomic analysis between the warthog and other Suidae species, including the Luchuan pig, Duroc pig, and Red River hog. By integrating the four genomes with sequences from the other four species, we identified 8868 single-copy orthologous genes. Based on 8868 orthologous protein sequences, phylogenetic assessments highlighted divergence timelines and unique evolutionary branches within suid species. Warthogs exist on different evolutionary branches compared to DRCs and LCs, with a divergence time preceding that of DRC and LC. Contraction and expansion analyses of warthog gene families have been conducted to elucidate the mechanisms of their evolutionary adaptations. Using GO, KEGG, and MGI databases, warthogs showed a preference for expansion in sensory genes and contraction in metabolic genes, underscoring phenotypic diversity and adaptive evolution direction. Associating genes with the QTLdb-pigSS11 database revealed links between gene families and immunity traits. The overlap of olfactory genes in immune-related QTL regions highlighted their importance in evolutionary adaptations. This work highlights the unique evolutionary strategies and adaptive mechanisms of warthogs, guiding future research into the distinct adaptability and disease resistance in pigs, particularly focusing on traits such as resistance to African Swine Fever Virus.


African Swine Fever Virus , Swine/genetics , Animals , Phylogeny , Genome/genetics , Genomics , Phenotype
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123848, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38266602

Gentian, an herb resource known for its antioxidant properties, has garnered significant attention. However, existing methods are time-consuming and destructive for assessing the antioxidant activity in gentian root samples. In this study, we propose a method for swiftly predicting the antioxidant activity of gentian root using FT-IR spectroscopy combined with chemometrics. We employed machine learning and deep learning models to establish the relationship between FT-IR spectra and DPPH free radical scavenging activity. The results of model fitting reveal that the deep learning model outperforms the machine learning model. The model's performance was enhanced by incorporating the Double-Net and residual connection strategy. The enhanced model, named ResD-Net, excels in feature extraction and also avoids gradient vanishing. The ResD-Net model achieves an R2 of 0.933, an RMSE of 0.02, and an RPD of 3.856. These results support the accuracy and applicability of this method for rapidly predicting antioxidant activity in gentian root samples.


Antioxidants , Gentiana , Spectroscopy, Fourier Transform Infrared/methods , Plant Extracts
11.
Aquat Toxicol ; 267: 106832, 2024 Feb.
Article En | MEDLINE | ID: mdl-38215609

Hepatopancreatic necrosis disease (HPND) broke out in 2015 in the Eriocheir sinensis aquaculture region of Xinghua, Jiangsu Province; however, the specific cause of HPND remains unclear. A correlation was found between HPND outbreak and the use of deltamethrin by farmers. In this study, E. sinensis specimens developed the clinical symptoms of HPND after 93 days of deltamethrin stress. The growth of E. sinensis with HPND was inhibited. Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of energy homeostasis, and its expression was up-regulated in the intestine of E. sinensis with HPND. Growth inhibitory genes (EsCabut, Es4E-BP, and EsCG6770) were also up-regulated in the intestine of E. sinensis with HPND. The expression levels of EsCabut, Es4E-BP, and EsCG6770 decreased after EsAMPK knockdown. Therefore, AMPK mediated the growth inhibition of E. sinensis with HPND. Further analysis indicated the presence of a crosstalk between the Toll and AMPK signaling pathways in E. sinensis with HPND. Multiple genes in the Toll signaling pathway were upregulated in E. sinensis under 93 days of deltamethrin stress. EsAMPK and its regulated growth inhibition genes were down-regulated after the knockdown of genes in the Toll pathway. In summary, the crosstalk between the Toll and AMPK signaling pathways mediates the growth inhibition of E. sinensis under deltamethrin stress.


Brachyura , Pyrethrins , Water Pollutants, Chemical , Animals , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Water Pollutants, Chemical/toxicity , Pyrethrins/toxicity , Pyrethrins/metabolism , Nitriles/toxicity , Necrosis , Brachyura/metabolism
12.
Int J Biol Macromol ; 257(Pt 2): 128613, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070814

Circular RNAs (circRNA) are a kind of endogenous biological macromolecules that play significant roles in many biological processes, including adipogenesis, a precisely orchestrated process that is mediated by a large number of factors. Among them, peroxisome proliferator-activated receptor gamma (PPARG), is undoubtedly the most important regulator of adipocyte development in all types of adipose tissue. The formation of intramuscular fat (IMF), is a key factor that influences the meat quality in livestock animals. PPARG has been demonstrated to show a positive correlation with IMF deposition although the regulatory mechanism involved is not known. This study demonstrates that PPARG mediates IMF deposition by producing multiple exonic circRNAs (circPPARGs). Three circPPARGs promote adipogenic differentiation and inhibit the proliferation of intramuscular preadipocytes and these effects are conserved across several species including buffaloes, cattle and mice. Notably, circPPARG1 interacts with PPARG protein to inhibit the transcription of hormone sensitive lipase (HSL) involved in lipolysis. In addition, the positive effects of circPPARG1 on IMF deposition were identified in mice in vivo. Thus, PPARG drives IMF deposition, not only through the common transcription factor pathway, but also by producing circRNAs. This study provides new insights into our understanding of the regulatory mechanisms of PPARG in IMF deposition.


PPAR gamma , RNA, Circular , Cattle , Animals , Mice , RNA, Circular/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Sterol Esterase/genetics , Adipogenesis/genetics , Adipose Tissue/metabolism
13.
Luminescence ; 2023 Dec 10.
Article En | MEDLINE | ID: mdl-38072397

Fluorophores in aggregated state are commonly used in optoelectronic devices, and the molecular packing are complex and diverse, including crystal, amorphous aggregate in solution, thin film, ordered supramolecular assemblies, and highly ordered cell membrane. In addition, the luminous behavior of the aggregated state can be precisely regulated by external stimuli such as hydrostatic pressure. In this review, we summarize the representative progress on the application of multiscale modeling protocol to illustrate the underlying mechanism of fluorescent emission of organic dyes in different assembles. The aim is to obtain the molecular packing in different forms of assembles and then to understand their underlying mechanism of stimuli-responsive fluorescent behavior at the molecular level. This is essential for the rational design, synthesis, and efficient application of fluorescent dyes.

14.
Angew Chem Int Ed Engl ; 62(51): e202314510, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37926915

The phosphate-coordination triple helicates A2 L3 (A=anion) with azobenzene-spaced bis-bis(urea) ligands (L) have proven to undergo a rare in situ photoisomerization (without disassembly of the structure) rather than the typically known, stepwise "disassembly-isomerization-reassembly" process. This is enabled by the structural self-adaptability of the "aniono" assembly arising from multiple relatively weak and flexible hydrogen bonds between the phosphate anion and bis(urea) units. Notably, the Z→E thermal relaxation rate of the isomerized azobenzene unit is significantly decreased (up to 20-fold) for the triple helicates compared to the free ligands. Moreover, the binding of chiral guest cations inside the cavity of the Z-isomerized triple helicate can induce optically pure diastereomers, thus demonstrating a new strategy for making light-activated chiroptical materials.

15.
Molecules ; 28(13)2023 Jun 26.
Article En | MEDLINE | ID: mdl-37446662

Gentian is a traditional Chinese herb with heat-clearing, damp-drying, inflammation-alleviating and digestion-promoting effects, which is widely used in clinical practice. However, there are many species of gentian. According to the pharmacopoeia, Gentiana manshurica Kitag, Gentiana scabra Bge, Gentiana triflora Pall and Gentianarigescens Franch are included. Therefore, accurately identifying the species of gentian is important in clinical use. In recent years, with the advantages of low cost, convenience, fast analysis and high sensitivity, infrared spectroscopy (IR) has been extensively used in herbal identification. Unlike one-dimensional spectroscopy, a two-dimensional correlation spectrum (2D-COS) can improve the resolution of the spectrum and better highlight the details that are difficult to detect. In addition, the residual neural network (ResNet) is an important breakthrough in convolutional neural networks (CNNs) for significant advantages related to image recognition. Herein, we propose a new method for identifying gentian-related species using 2D-COS combined with ResNet. A total of 173 gentian samples from seven different species are collected in this study. In order to eliminate a large amount of redundant information and improve the efficiency of machine learning, the extracted feature band method was used to optimize the model. Four feature bands were selected from the infrared spectrum, namely 3500-3000 cm-1, 3000-2750 cm-1, 1750-1100 cm-1 and 1100-400 cm-1, respectively. The one-dimensional spectral data were converted into synchronous 2D-COS images, asynchronous 2D-COS images, and integrative 2D-COS images using Matlab (R2022a). The identification strategy for these three 2D-COS images was based on ResNet, which analyzes 2D-COS images based on single feature bands and full bands as well as fused feature bands. According to the results, (1) compared with the other two 2D-COS images, synchronous 2D-COS images are more suitable for the ResNet model, and (2) after extracting a single feature band 1750-1100 cm-1 to optimize ResNet, the model has the best convergence performance, the accuracy of training, test and external validation is 1 and the loss value is only 0.155. In summary, 2D-COS combined with ResNet is an effective and accurate method to identify gentian-related species.


Gentiana , Gentiana/chemistry , Neural Networks, Computer , Spectrophotometry, Infrared , Machine Learning , Hot Temperature
16.
Environ Sci Pollut Res Int ; 30(35): 84002-84010, 2023 Jul.
Article En | MEDLINE | ID: mdl-37353701

Amphiphilic blue-fluorescence carbon dots (B-CDs) were synthesized via pyrolysis method with citric acid and oleamine as precursors. B-CDs are monodispersed in ethanol, toluene, and ultrapure water with the average particle sizes of 3.33 nm, 2.05 nm, and 4.12 nm, respectively. The maximum emission wavelength of the B-CDs excitation at 370 nm is located at 459 nm. The B-CDs have good optical properties with excellent photostability. The fluorescence quantum yield (QY) of the as-prepared CDs is as high as 30.17%. The fluorescence of B-CDs is quenched because of static quenching by oxytetracycline. A high selective and sensitive fluorescence probe for detecting oxytetracycline was constructed with a linear range of 1.52-27.60 µg/mL and the detection limit of 0.33 µg/mL. The B-CDs-based fluorescence probe can be applied to analyze oxytetracycline in milk; the recoveries and relative standard are satisfactory. Furthermore, the B-CDs were exploited for imaging of SH-SY5Y cells. The results demonstrate that as-synthesized CDs can serve as a cellular imaging reagent owing to remarkable bioimaging performance. This work provides a new strategy for the detection of oxytetracycline in food.


Neuroblastoma , Oxytetracycline , Quantum Dots , Humans , Animals , Fluorescent Dyes , Carbon , Milk , Pyrolysis , Spectrometry, Fluorescence
17.
Int J Mol Sci ; 24(9)2023 May 07.
Article En | MEDLINE | ID: mdl-37176117

Fat deposition is a significant economic trait in livestock animals. Adipose tissues (ATs) developed in subcutaneous and visceral depots are considered waste whereas those within muscle are highly valued. In river buffaloes, lipogenesis is highly active in subcutaneous (especially in the sternum subcutaneous) and visceral depots but not in muscle tissue. Revealing the features and functions of ATs in different depots is significant for the regulation of their development. Here, we characterize the cell size, composition, and function of six AT depots in river buffaloes. Our data support that the subcutaneous AT depots have a larger cell size than visceral AT depots, and the subcutaneous AT depots, especially the sternum subcutaneous AT, are mainly associated with the extracellular matrix whereas the visceral AT depots are mainly associated with immunity. We found that sternum subcutaneous AT is significantly different from ATs in other depots, due to the high unsaturated fatty acid content and the significant association with metabolic protection. The perirenal AT is more active in FA oxidation for energy supply. In addition, the expression of HOX paralogs supports the variable origins of ATs in different depots, indicating that the development of ATs in different depots is mediated by their progenitor cells. The present study enhances our understanding of the cellular and molecular features, metabolism, and origin of AT depots in buffaloes, which is significant for the regulation of fat deposition and provides new insights into the features of AT depots in multiple discrete locations.


Buffaloes , Subcutaneous Fat , Animals , Subcutaneous Fat/metabolism , Rivers , Obesity/metabolism , Adipose Tissue/metabolism , Intra-Abdominal Fat/metabolism
18.
Aquat Toxicol ; 260: 106575, 2023 Jul.
Article En | MEDLINE | ID: mdl-37196508

Nitrite stress and white spot syndrome virus (WSSV) infection are major problems threatening the sustainable and healthy development of Eriocheir sinensis. Some studies have found that nitrite stress can lead to the production of reactive oxygen species (ROS), whereas synthetic ROS plays a vital role in the signaling pathway. However, whether nitrite stress influences the infection of crabs by WSSV remains unclear. NADPH oxidases, including NOX1-5 and Duox1-2, are important for ROS production. In the present study, a novel Duox gene (designated as EsDuox) was identified from E. sinensis. The studies found that nitrite stress could increase the expression of EsDuox during WSSV infection and decrease the transcription of the WSSV envelope protein VP28. Moreover, nitrite stress could increase the production of ROS, and the synthesis of ROS relied on EsDuox. These results indicated a potential "nitrite stress-Duox activation-ROS production" pathway that plays a negative role in WSSV infection in E. sinensis. Further studies found that nitrite stress and EsDuox could promote the expression of EsDorsal transcriptional factor and antimicrobial peptides (AMPs) during WSSV infection. Moreover, the synthesis of AMPs was positively regulated by EsDorsal in the process of WSSV infection under nitrite stress. Furthermore, EsDorsal played an inhibitory role in the replication of WSSV under nitrite stress. Our study reveals a new pathway for "nitrite stress-Duox activation-ROS production-Dorsal activation-AMP synthesis" that is involved in the defense against WSSV infection in E. sinensis during short-term nitrite stress.


Brachyura , Penaeidae , Water Pollutants, Chemical , White spot syndrome virus 1 , Animals , Nitrites/toxicity , Nitrites/metabolism , Reactive Oxygen Species/metabolism , Brachyura/genetics , Water Pollutants, Chemical/toxicity , Penaeidae/metabolism
19.
Front Psychol ; 14: 1059298, 2023.
Article En | MEDLINE | ID: mdl-36818097

Dual language learners (DLLs), especially those from immigrant families in the United States, risk losing their home language as they gradually shift to speaking English as they grow up. Given the potential benefits of bilingualism on children's cognitive, linguistic, and social-emotional development, it is crucial to maintain children's home language to foster bilingual development. The current literature suggests that parental beliefs toward bilingualism and the language and literacy environment are linked to children's language development. With the growing number of DLLs living in the United States, little is known about what parental beliefs about bilingualism of their children are integrated into these bilingual households and parents' role in home language maintenance. The present study addresses the gap in the literature by investigating low-income immigrant families, specifically Chinese American and Mexican American families, and exploring the parental perceptions of children's bilingual language learning. Further, the present study examines the relations among parental perceptions of bilingualism, home language and literacy practices, and home language oral proficiency. Data were collected from a total of 41 Mexican American and 91 Chinese American low-income immigrant families with DLLs ages 50-88 months who had been recruited from Head Start programs and state-funded preschools in Northern California when the children were 3-4 years old. Information about shared reading frequency, home language exposure and usage, and parental perceptions of bilingualism was collected through parental interviews, and DLLs' home language oral proficiency was individually assessed. No significant difference in home language oral proficiency was observed between the two groups. Principal Components Analysis on the parental perceptions of bilingualism measure revealed two components, "Importance of Being Bilingual" and "English over Bilingualism." Stepwise regression analysis results show that "Importance of Being Bilingual" was associated with children's home language oral proficiency after controlling for culture, child age, the frequency of home language shared book reading, and child home language exposure and use. The results show that parents' positive beliefs toward bilingualism are related to the children's use of that language and their children's language outcomes. Implications and suggestions for home language and literacy support for DLLs are discussed.

20.
Anim Biotechnol ; 34(7): 2736-2744, 2023 Dec.
Article En | MEDLINE | ID: mdl-36001396

Intramuscular fat (IMF) content is one of the most significant factors influencing beef quality in terms of tenderness, flavor, and juiciness. Thus, internal factors affecting IMF deposition have received considerable attention for decades. In this study, we demonstrated a long non-coding RNA, lnc210, promoted adipogenic differentiation of buffalo intramuscular adipocytes. lnc210 was rich in adipose tissue and showed increased expression with the adipogenic differentiation of buffalo intramuscular adipocytes. lnc210 was mainly expressed in the nucleus of adipocytes. Full-length lnc210 was obtained by rapid amplification of cDNA ends technology. lnc210 overexpression promoted lipid accumulation by upregulating the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG) and CCAAT enhancer binding protein alpha (C/EBPα) in buffalo intramuscular adipocytes. These results provide a basis for an in-depth analysis of the role of lnc210 in accelerating IMF deposition in buffaloes.


Buffaloes , RNA, Long Noncoding , Cattle , Animals , Buffaloes/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Adipocytes/physiology , Adipogenesis/genetics , Adipose Tissue , Cell Differentiation/genetics
...