Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907048

RESUMEN

Adjuvants for vaccines with characteristics of improving adaptive immunity particularly via leverage of antigen presenting cells (APCs) are currently lacking. In a previous work we obtained a new soluble 300 kDa homogeneous ß-glucan named GFPBW1 from the fruit bodies of Granola frondosa. GFPBW1 could activate macrophages by targeting dendritic cell associated C-type lectin 1 (Dectin-1)/Syk/NF-κB signaling to achieve antitumour effects. In this study the adjuvant effects of GFPBW1 were explored with OVA-antigen and B16-OVA tumor model. We showed that GFPBW1 (5, 50, 500 µg/mL) dose-dependently promoted activation and maturation of APCs in vitro by increasing CD80, CD86 and MHC II expression. We immunized female mice with OVA in combination with GFPBW1 (50 or 300 µg) twice with an interval of two weeks. GFPBW1 markedly and dose-dependently increased OVA-specific antibody titers of different subtypes including IgG1, IgG2a, IgG2b and IgG3, suggesting that it could serve as an adjuvant for both Th1 and Th2 type immune responses. Furthermore, GFPBW1 in combination with aluminum significantly increased the titers of OVA-specific IgG2a and IgG2b, but not those of IgG1, suggesting that GFPBW1 could be used as a co-adjuvant of aluminum to compensate for Th1 deficiency. For mice immunized with OVA plus GFPBW1, no obvious pathological injury was observed in either major organs or injection sites, and no abnormalities were noted for any of the hematological parameters. When GFPBW1 served as an adjuvant in the B16-OVA cancer vaccine models, it could accomplish entire tumor suppression with preventive vaccines, and enhance antitumour efficacy with therapeutic vaccines. Differentially expressed genes were found to be enriched in antigen processing process, specifically increased tumor infiltration of DCs, B1 cells and plasma cells in the OVA plus GFPBW1 group, in accordance with its activation and maturation function of APCs. Collectively, this study systematically describes the properties of GFPBW1 as a novel potent and safe adjuvant and highlights its great potential in vaccine development.

2.
Front Neurol ; 14: 1269862, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107649

RESUMEN

Introduction: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Ursolic acid (UA) can be used in the MS treatment with anti-inflammatory and neuroprotective activities. However, UA is insoluble in water, which may affect its medication effectiveness. In our previous study, UAOS-Na, a water-soluble derivative of UA was obtained. In this study, we evaluated the pharmacological effects and explored its underlying mechanism of UAOS-Na on experimental autoimmune encephalomyelitis (EAE). Methods: Firstly, the pharmacodynamics of UAOS-Na was investigated in EAE and Cuprizone-induced mice. And then the possible mechanisms were investigated by TMT proteomics and verified by in vitro and in vivo experiments. Results: UAOS-Na (30 mg/kg/d) delayed the onset time of EAE from 11.78 days post immunization (dpi) to 14.33 dpi, reduced the incidence from 90.0% to 42.9%. UAOS-Na (60 mg/kg/d) reduced the serum levels of IFN-γ, IL-17A, TNF-α and IL-6, reduced the mononuclear cell infiltration of spinal cord, and inhibited the overexpression of key transcription factors T-bet and ROR-γt of EAE mouse spinal cord. In addition, UAOS-Na attenuated demyelination and astrogliosis in the CNS of EAE and cuprizone-induced mice. Mechanistically, proteomics showed that 96 differential expression proteins (DEPs) were enriched and 94 were upregulated in EAE mice compared with normal group. After UAOS-Na treatment, 16 DEPs were enriched and 15 were downregulated, and these DEPs were markedly enriched in antigen processing and presentation (APP) signaling pathway. Moreover, UAOS-Na downregulated the protein levels of Tapbp and H2-T23 in MHC-I antigen presentation pathway and reduced the proliferation of splenic CD8 T cells, thereby inhibiting the CNS infiltration of CD8 T cells. Conclusion: Our findings demonstrated that UAOS-Na has both myelin protective and anti-inflammatory effects. And it could reduce the inflammation of MS by downregulating the expression of Tapbp and H2-T23 in the MHC-I antigen presentation pathway.

3.
Cell Biol Int ; 47(11): 1813-1824, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37471707

RESUMEN

The present study aims to investigate the mechanism of the nature compound gambogenic acid (GNA) on the apoptosis and ferroptosis in colorectal cancer (CRC). The effect of GNA on the proliferation of CRC cell lines were detected by MTT and clonogenic assay. The xenograft tumor model was established, and the inhibition effect of GNA were evaluated by observing the tumor growth. The endoplasmic reticulum (ER) of HCT116 was observed by using the ER tracker. The TargrtScan database was used to predict the miRNA binding sites. The level of miRNA with GNA treatment was explored by real-time quantitative PCR. The effect of ferroptosis were evaluated by detect the expression of reactive oxygen species (ROS), intracellular ferrous iron (Fe2+ ), malondialdehyde (MDA), glutathione (GSH), subunit solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase (GPX)4, transferrin, and ferritin by Western blot. GNA isolated from gamboge can inhibit the growth and proliferation of CRC cell lines in a concentration-dependent manner. GNA activated ER stress by upregulating miR-1291, and miR-1291 targeted the forkhead box protein A2 (FOXA2). GNA also induced ROS production and mediated the Fenton reaction by activating transferrin to increase Fe2+ , thus inducing ferroptosis. In addition, GNA could induce ferroptosis through the depletion of GSH and GPX4. Furthermore, GNA treatment regulated iron metabolism by activating AMPKα/SLC7A11/GPX4 signaling. In conclusion, GNA activated ER stress via miR-1291 and induced ferroptosis in CRC cells and might be a new inducer of ferroptosis, which can expand the efficacy of chemotherapy drugs.

4.
Curr Cancer Drug Targets ; 23(10): 751-763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37170983

RESUMEN

The sarcoma virus oncogene (Src) tyrosine kinase, a nonreceptor protein-tyrosine kinase, plays a crucial role in cell survival, migration, differentiation and proliferation. The study of Src has developed considerably since it was first discovered as a proto-oncogene. Src has also been associated with inflammation and bone-related diseases. Src inhibitors (bosutinib, ponatinib, dasatinib, and vandetanib) have been put into clinical use. However, their side effects and cardiovascular toxicity may be a concern. There is an urgent need to explore new Src inhibitors. Traditional Chinese medicine (TCM), which has a vast history, can provide a broad resource base. Many natural compounds and TCM extracts have the potential for anti-Src treatment. This article describes the natural compounds and extracts from TCM.


Asunto(s)
Medicina Tradicional China , Sarcoma , Humanos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas , Sarcoma/tratamiento farmacológico , Oncogenes
5.
Biomed Res Int ; 2023: 2620738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090185

RESUMEN

Breast cancer is a highly harmful malignant tumor, which poses a great threat to women's body and mind, and the mortality rate ranks second among all women's diseases. The incidence rate accounts for 7-10% of various malignant tumors in the whole body, second only to uterine cancer in women, and has become the main cause of threatening women's health. Advanced breast cancer is often considered an incurable disease. The family of heterogeneous nuclear ribonucleoprotein complexes is composed of about 20 hnRNP proteins with molecular weights ranging from 32 to 120 kDa, and they are named according to their molecular weights. Among them, hnRNPA2 and hnRNPB1 are the two most important members of the hnRNP family, both derived from the same gene on chromosome 7p15. Therefore, research to understand the molecular mechanism and process of breast cancer progression has an important role in promoting the current medical research on breast cancer treatment methods. Therefore, studying the mechanism of tumorigenesis is the key to tumor prevention and treatment. Therefore, this paper proposes that A2/B1 promotes the stability of NRF2 mRNA and inhibits ferroptosis and cell proliferation in breast cancer cells. The article mainly introduces the disease diagnosis method based on artificial neural network and its neural network algorithm. In the experimental part, the activity of hnRNP A2/B1 on cancer cells is deeply studied. The results show that the absorbance of the MTT method increases continuously with the extension of the culture time, and the maximum reaches 1.2. This fully shows that its absorption capacity is very strong, especially after 24 hours, the absorption rate rises from 0.6 to 0.9, which shows that 24 hours is the best absorption time. And it can also be found that hnRNPA2/B1 has a significant inhibitory effect on breast cancer cells; it can reduce the effect on breast cancer cell cycle and apoptosis.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/genética , Ferroptosis/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estabilidad del ARN
6.
Chem Biol Interact ; 379: 110520, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121296

RESUMEN

Gastric cancer (GC) is one of the most common malignancies, and it has become the third most common malignant tumour in the world. Targeting metastasis has also become a key and difficult point in the treatment of GC. Solasodine is an active ingredient isolated from Solanum nigrum L. for the treatment of various cancers, such as breast cancer, pancreatic cancer and lung cancer. In the present study, we investigated the role and mechanism of solasodine in inhibiting GC. In vitro, we found that solasodine not only promoted cell death but also inhibited the migration and invasion of HGC27 and AGS cells. Solasodine regulated epithelial-mesenchymal transition (EMT) and reduced the expression of claudin-2 (CLDN2). Moreover, overexpression of CLDN2 inhibited the prometastatic phenotype and EMT of GC, and solasodine recovered this phenotype. Furthermore, the knockdown of CLDN2 had the opposite effect. We also found that the AMPK activators metformin and AICAR activated phosphorylation of AMPK and downregulated the expression of RhoA and CLDN2, indicating that AMPK was the upstream regulator of CLDN2. Solasodine could also activate AMP-activated protein kinase (AMPK) and inhibit the phosphorylation of STAT3 and the nuclear translocation of NF-κB. Therefore, solasodine may have prevented EMT by modulating the AMPK/STAT3/NF-κB/CLDN2 signalling pathway. In vivo, we established a xenograft model to investigate the phosphorylation of AMPK and the expression of CLDN2 from tumour tissues, and we found that solasodine inhibited tumour growth through AMPK-CLDN2 pathway. To sum up, solasodine prevented EMT by modulating the AMPK/STAT3/NF-κB/CLDN2 signalling pathway, becoming a new solution for inhibiting GC metastasis.


Asunto(s)
FN-kappa B , Neoplasias Gástricas , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Claudina-2/metabolismo , Transición Epitelial-Mesenquimal , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Animales
7.
Sci Adv ; 8(49): eade3061, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490342

RESUMEN

Although cities are human-dominated systems, they provide habitat for many other species. Because of the lack of long-term observation data, it is challenging to assess the impacts of rapid urbanization on biodiversity in Global South countries. Using multisource data, we provided the first analysis of the impacts of urbanization on bird distribution at the continental scale and found that the distributional hot spots of threatened birds overlapped greatly with urbanized areas, with only 3.90% of the threatened birds' preferred land cover type in urban built-up areas. Bird ranges are being reshaped differently because of their different adaptations to urbanization. While green infrastructure can improve local bird diversity, the homogeneous urban environment also leads to species compositions being more similar across regions. More attention should be paid to narrow-range species for the formulation of biodiversity conservation strategies, and conservation actions should be further coordinated among cities from a global perspective.

8.
ACS Omega ; 7(20): 17202-17214, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647455

RESUMEN

Considering disadvantages such as the low thermal stability and environmental pollution of existing gel inhibitors, a green and stable intumescent nanoinhibitor (INI) was prepared and tested. First, polyacrylamide (PAM), nano-silica, and intumescent flame retardant (IFR) were selected as raw materials. The INI was prepared by nanoparticle modification and cross-linking polymerization. Then, the structure and physical properties of INI were tested by Fourier transform infrared spectroscopy, scanning electron microscopy, and rheological experiments. Meanwhile, the inhibition performance of INI was studied through thermogravimetric analysis-Fourier transfer infrared spectroscopy (TGA-FTIR) analysis. The results suggest that the nanomodification improved the dispersibility of INI particles. The addition of modified nano-silica (MNS) and IFR enhances the strength of the reticular structure, thereby improving the transport convenience and covering ability of the INI gel. At high temperatures, IFR can generate a porous foamed carbon layer that further coats the coal. After INI inhibition treatment, the characteristic temperature and activation energy of coal were significantly improved, and the production of carbon monoxide and carbon dioxide decreased. Hence, irrespective of physical properties, physical inhibition performance, or chemical inhibition performance, INI performed well. Research results can provide valuable references for the preparation and performance study of a coal spontaneous combustion inhibitor.

9.
J Environ Manage ; 318: 115370, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35752003

RESUMEN

In December 2016, China proposed creating about ten sustainable development demonstration zones to create a batch of replicable and extendable demonstration models to fully realize the 2030 sustainable development goals (SDGs) and provide a reference for similar regions of emerging economies. It has now approved six cities that act as green and low carbon lifestyle laboratories. However, very few documents quantitatively evaluate this policy's natural, economic, and social impact. This article comprehensively uses dynamic stochastic general equilibrium (DSGE) methods and input-output methods to portray the urgency of sustainable development in China. This article sets the sustainable indicator system for the approved six cities and sets scenario simulations based on transformation needs for quantitative evaluation. The results show that demonstration zones policies would lead to a decline in the output of heavily polluting industries. However, in China's current coal-dominated energy structure, the degree of positive impact on the growth of clean industry output would be less than the intensity of the impact on heavily polluting industries.


Asunto(s)
Industrias , Desarrollo Sostenible , Carbono , China , Ciudades , Carbón Mineral , Desarrollo Económico
10.
J Cancer ; 13(1): 243-252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34976186

RESUMEN

Shikonin is a naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon, which has displayed potent anti-tumor properties. However, the effects of shikonin in colorectal cancer cells have not been yet fully investigated. In this study, we demonstrated that shikonin significantly inhibited the activity of colorectal cancer cells in a time- and dose-dependent manner. The flow cytometry and western blot results indicated that shikonin induced cell apoptosis by down-regulating BCL-2 and activating caspase-3/9 and the cleavage of PARP. The expression of BiP and the PERK/elF2α/ATF4/CHOP and IRE1α /JNK signaling pathways were upregulated after shikonin treatment. The pre-treatment with N-acetyl cysteine significantly reduced the cytotoxicity of shikonin. Taken together, shikonin could inhibit proliferation of the colorectal cancer cell through the activation of ROS mediated-ER stress. The in vivo results showed that shikonin effectively inhibited tumor growth in the HCT-116 and HCT-15 xenograft models. In conclusion, shikonin inhibited the proliferation of colorectal cancer cells in vitro and in vivo and warrants future investigation.

11.
ACS Omega ; 6(49): 33685-33693, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34926916

RESUMEN

This study investigates changes in the concentration and types of free radicals in the process of coal heating, first rising and then falling. Hailar lignite, Panjiang bituminous coal, and Yangquan anthracite were selected as coal test samples. The results show that the lignite's concentration of free radical changes during heating is greater than that of bituminous coal or anthracite. It clearly shows that lignite is more prone to spontaneous combustion. In the heating and cooling portion of the experiment, the concentration of free radicals during the cooling process was much more than that of free radicals at the same temperature during the heating process. These results obtained from this research study can provide a reference for the prevention and control of the spontaneous combustion of coal with changes in temperature. This study provides a theoretical basis for the prevention and control of spontaneous combustion of coal and the selection of retarding agents and methods in the process of flame retarding by testing the free radical changes of coal at different temperatures. Also, it provides a reference for preventing and controlling coal oxidation with the change in temperature, first rising and then falling.

12.
Front Cell Dev Biol ; 9: 736350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692693

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies in the world and has a poor prognosis. In the present research, gambogenic acid (GNA), isolated from the traditional Chinese medicine gamboge, markedly induced apoptosis and inhibited the proliferation of CRC in vitro and in vivo. Furthermore, GNA triggered endoplasmic reticulum (ER) stress, which subsequently activated inositol-requiring enzyme (IRE) 1α and the eukaryotic translation initiation factor (eIF) 2α pathway. Pretreatment with salubrinal (an eIF2α inhibitor) rescued GNA-induced cell death. Furthermore, GNA downregulated the expression of Aurora A. The Aurora A inhibitor alisertib decreased ER stress. In human colorectal adenocarcinoma tissue, Aurora A was upregulated compared to normal colorectal epithelial nuclei. Furthermore, GNA ameliorated mouse colitis-associated cancer models. Our findings demonstrated that GNA significantly inhibited the proliferation of CRC through activation of ER stress by regulating Aurora A, which indicates the potential of GNA for preventing the progression of CRC.

14.
Toxicol Res (Camb) ; 10(3): 436-445, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34141157

RESUMEN

Aristolochic acid I (AAI) is a natural bioactive substance found in plants from the Aristolochiaceae family and impairs spermatogenesis. However, whether AAI-induced spermatogenesis impairment starts at the early stages of spermatogenesis has not yet been determined. Spermatogonial stem cells (SSCs) are undifferentiated spermatogonia that balance self-renewing and differentiating divisions to maintain spermatogenesis throughout adult life and are the only adult stem cells capable of passing genes onto the next generation. The objective of this study was to investigate whether AAI impairs SSCs during the early stages of spermatogenesis. After AAI treatment, we observed looser, smaller and fewer colonies, decreased cell viability, a decreased relative cell proliferation index, and increased apoptosis in SSCs in a concentration- and/or time-dependent manner. Additionally, AAI promoted apoptosis in SSCs, which was accompanied by upregulation of caspase 3, P53 and BAX expression and downregulation of Bcl-2 expression, and suppressed autophagy, which was accompanied by upregulation of P62 expression and downregulation of ATG5 and LC3B expression, in a concentration-dependent manner. Then we found that AAI impaired spermatogenesis in rats, as identified by degeneration of the seminiferous epithelium, and increased apoptosis of testicular cells. Taken together, our findings demonstrate that AAI causes damage to SSCs and implicate apoptosis and autophagy in this process. The impairment of SSCs may contribute to AAI-induced testicular impairment. Our findings provide crucial information for the human application of botanical products containing trace amounts of AAI.

15.
Pharmazie ; 76(5): 202-207, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964993

RESUMEN

In this study, we treated esophageal cancer (EC) cell lines, TE1 and KYSE450 with coptisine (COP) and investigated the biological effects of COP in EC cells. Our results showed that COP inhibited the cell viability and proliferation of EC cells, and COP induced G2/M phase arrest of EC cells and decreased the expression of claudin-2, p-cdc2, CDK1 and cyclin B1. In addition, we found the reduction of p-p38 and p-ERK1/2 in EC cells treated with COP. The effects of COP on pro-cell cycle arresting were reversed after combined with p38 and ERK1/2 inhibitors. Overall, these findings indicate that COP may possess potential for anti-tumor effects in EC and may contribute to the development as anti-cancer agents.


Asunto(s)
Berberina/análogos & derivados , Claudina-2/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antineoplásicos/farmacología , Berberina/química , Berberina/farmacología , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina B1/metabolismo , Humanos , Imidazoles/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Biomed Pharmacother ; 134: 111116, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341041

RESUMEN

Ulcerative colitis (UC) is chronic disease characterized by diffuse inflammation of the mucosa of the colon and rectum. Although the etiology is unknown, dysregulation of the intestinal mucosal immune system is closely related to UC. Cinnamaldehyde (CA) is a major active compound from cinnamon, is known as its anti-inflammatory and antibacterial. However, little research focused on its regulatory function on immune cells in UC. Therefore, we set out to explore the modulating effects of CA on immune cells in UC. We found that CA reduced the progression of colitis through controlling the production of proinflammatory cytokines and inhibiting the proportion of Th17 cells. Furthermore, the liquid chromatography-mass spectrometry (LC-MS) method was employed for analyzing and differentiating metabolites, data showed that sphingolipid pathway has a great influence on the effect of CA on UC. Meanwhile, sphingosine-1-phosphate receptor 2 (S1P2) and Rho-GTP protein levels were downregulated in colonic tissues after CA treatment. Moreover, in vitro assays showed that CA inhibited Th17 cell differentiation and downregulated of S1P2 and Rho-GTP signaling. Notably, we found that treatment with S1P2 antagonist (JTE-013) weakened the inhibitory effect of CA on Th17 cells. Furthermore, S1P2 deficiency (S1P2-/-) blocked the effect of CA on Th17 cell differentiation. In addition, CA can also improve inflammation via lncRNA H19 and MIAT. To sum up, this study provides clear evidence that CA can ameliorate ulcerative colitis through suppressing Th17 cells via S1P2 pathway and regulating lncRNA H19 and MIAT, which further supports S1P2 as a potential drug target for immunity-mediated UC.


Asunto(s)
Acroleína/análogos & derivados , Antiinflamatorios/farmacología , Diferenciación Celular/efectos de los fármacos , Colitis Ulcerosa/prevención & control , Colon/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo , Acroleína/farmacología , Animales , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/inmunología , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones Endogámicos BALB C , Fenotipo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Células Th17/inmunología , Células Th17/metabolismo
17.
Transl Lung Cancer Res ; 10(11): 4235-4249, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35004253

RESUMEN

BACKGROUND: This study aimed to verify the feasibility of human epidermal growth factor receptor-2 (HER2) amplification detection by digital polymerase chain reaction (dPCR) in non-small cell lung cancer (NSCLC) patients and explore whether HER2 amplification could be detected in circulating tumor DNA (ctDNA) by dPCR. METHODS: A total of 112 fresh biopsy tissues and 88 blood samples from NSCLC patients were collected. The serum ctDNA was obtained from blood samples. The copy number of the HER2 gene was evaluated by dPCR and next-generation sequencing (NGS). The sensitivity/specificity and survival analysis were performed by the receiver operating characteristic (ROC) curve. The survival analysis was performed by Kaplan-Meier (KM) curve and univariate Cox regression analysis was also conducted. RESULTS: ROC analysis showed a good prediction result for HER2 amplification in blood samples by dPCR. The survival analysis showed that the median overall survival (OS) in the HER2 negative group detected by blood dPCR was significantly different from the positive group. The results of multivariate Cox regression were the same as those of survival analysis. CONCLUSIONS: Blood dPCR might be a potential method to detect HER2 amplification in NSCLC. Amplification of the HER2 gene detected by dPCR was correlated with OS in NSCLC.

18.
Sci Adv ; 6(47)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33219032

RESUMEN

Biodiversity is essential for the maintenance of ecosystem health and delivery of the Sustainable Development Goals. However, the drivers of biodiversity loss and the spatial variation in their impacts are poorly understood. Here, we explore the spatial-temporal distributions of threatened and declining ("biodiversity-loss") species and find that these species are affected by multiple stressors, with climate and human activities being the fundamental shaping forces. There has been large spatial variation in the distribution of threatened species over China's provinces, with the biodiversity of Gansu, Guangdong, Hainan, and Shaanxi provinces severely reduced. With increasing urbanization and industrialization, the expansion of construction and worsening pollution has led to habitat retreat or degradation, and high proportions of amphibians, mammals, and reptiles are threatened. Because distributions of species and stressors vary widely across different climate zones and geographical areas, specific policies and measures are needed for preventing biodiversity loss in different regions.


Asunto(s)
Biodiversidad , Ecosistema , Anfibios , Animales , China , Conservación de los Recursos Naturales , Humanos , Mamíferos , Reptiles
19.
Biol Pharm Bull ; 43(1): 129-137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31902918

RESUMEN

Allergic contact dermatitis (ACD) is one of the most common skin diseases caused by hapten-modified proteins. Metformin, a drug commonly prescribed for type II diabetes, has been demonstrated to have various biological functions beyond its antidiabetic effects. However, its role in ACD remains unknown. In the present study, we found that metformin reduced the production of nitric oxide (NO) and the level of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. These anti-inflammatory effects were also demonstrated on bone marrow-derived macrophages (BMDMs). Furthermore, metformin also enhanced autophagic flux, inhibited the phosphorylation of the serine/threonine protein kinase (AKT)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) related protein levels and the level of miR-221 in LPS-stimulated RAW264.7 cells. Besides, metformin attenuated 2,4-dinitrofluorobenzene (DNFB)-induced ACD and inhibited proinflammatory cytokines in the ear. In addition, metformin ameliorated ACD partly through the inhibition of macrophage activation and the induction of autophagic flux. Taken together, our data indicated that metformin ameliorates ACD through enhanced autophagic flux to inhibit macrophage activation and provides a potential contribution to ACD treatment.


Asunto(s)
Antiinflamatorios/uso terapéutico , Dermatitis Alérgica por Contacto/tratamiento farmacológico , Metformina/uso terapéutico , Animales , Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Células Cultivadas , Citocinas/genética , Dermatitis Alérgica por Contacto/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
Pharmacol Res ; 151: 104513, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706010

RESUMEN

The suppression of the abnormal systemic immune response constitutes a primary strategy for treatment of rheumatoid arthritis (RA); toward this end, the identification of natural compounds with immunosuppressive activity represents a promising strategy for RA drug discovery. Cinnamtannin D1 (CTD-1), a polyphenolic compound isolated from Cinnamomum tamala, was previously reported to possess good immunosuppressive activity. However, the beneficial effect of CTD-1 on RA is currently unknown. The aim of this study was to evaluate the anti-arthritic effect of CTD-1 in collagen-induced arthritis (CIA) mice and clarify the underlying mechanisms. CTD-1 treatment significantly alleviated the severity of CIA mice, affording reduced clinical scores and paw swelling, along with reduced inflammatory cell infiltration and cartilage damage in the joints; in addition, the serum levels of IL-17, IL-6, and IL-1ß were decreased whereas those of TGF-ß and IL-10 were increased. CTD-1-treated mice exhibited lower frequency of Th17 cells and higher frequency of Treg cells compared to those in untreated mice, indicating that the balance of Th17/Treg cells may serve as the target for CTD-1. Consistent with this, in ex vivo assays, CTD-1 inhibited Th17 cell differentiation through the downregulation of phospho-STAT3/RORγt, whereas it promoted Treg differentiation by upregulating phospho-STAT5/Foxp3 in response to the stimulation of collagen type II. Moreover, in an in vitro naïve CD4+ T cell differentiation assay, CTD-1 directly inhibited Th17 cell differentiation and promoted Treg differentiation, suggesting that CTD-1 regulated the balance of Th17 and Treg cells to inhibit excessive immune response. Furthermore, the regulation effect of CTD-1 on Th17 and Treg cells was dependent on Ahr expression, as this effect was abolished when Ahr was knocked down and was impaired when Ahr was overexpressed. Together, our results indicated that CTD-1 treatment benefits CIA mice by regulating Th17 and Treg differentiation through the inhibition of AHR expression, and suggested a potential application of CTD-1 toward RA treatment.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Proantocianidinas/uso terapéutico , Receptores de Hidrocarburo de Aril/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Células Cultivadas , Cinnamomum/química , Inmunosupresores/química , Masculino , Ratones Endogámicos BALB C , Proantocianidinas/química , Receptores de Hidrocarburo de Aril/análisis , Linfocitos T Reguladores/inmunología , Células Th17/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...