Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1408406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887291

RESUMEN

Introduction: Acute respiratory distress syndrome (ARDS) is a major cause of death among critically ill patients in intensive care settings, underscoring the need to identify biomarkers capable of predicting ARDS patient clinical status and prognosis at an early time point. This study specifically sought to explore the utility and clinical relevance of TM9SF1 as a biomarker for the early prediction of disease severity and prognostic outcomes in patients with ARDS. Methods: This study enrolled 123 patients with severe ARDS and 116 patients with non-severe ARDS for whom follow-up information was available. The mRNA levels of TM9SF1 and cytokines in peripheral blood mononuclear cells from these patients were evaluated by qPCR. The predictive performance of TM9SF1 and other clinical indicators was evaluated using received operating characteristic (ROC) curves. A predictive nomogram was developed based on TM9SF1 expression and evaluated for its ability in the early prediction of severe disease and mortality in patients with ARDS. Results: TM9SF1 mRNA expression was found to be significantly increased in patients with severe ARDS relative to those with non-severe disease or healthy controls. ARDS severity increased in correspondence with the level of TM9SF1 expression (odds ratio [OR] = 2.43, 95% confidence interval [CI] = 2.15-3.72, P = 0.005), and high TM9SF1 levels were associated with a greater risk of mortality (hazard ratio [HR] = 2.27, 95% CI = 2.20-4.39, P = 0.001). ROC curves demonstrated that relative to other clinical indicators, TM9SF1 offered superior performance in the prediction of ARDS severity and mortality. A novel nomogram incorporating TM9SF1 expression together with age, D-dimer levels, and C-reactive protein (CRP) levels was developed and was used to predict ARDS severity (AUC = 0.887, 95% CI = 0.715-0.943). A separate model incorporating TM9SF1 expression, age, neutrophil-lymphocyte ratio (NLR), and D-dimer levels (C-index = 0.890, 95% CI = 0.627-0.957) was also developed for predicting mortality. Conclusion: Increases in ARDS severity and patient mortality were observed with rising levels of TM9SF1 expression. TM9SF1 may thus offer utility as a novel biomarker for the early prediction of ARDS patient disease status and clinical outcomes.


Asunto(s)
Biomarcadores , Síndrome de Dificultad Respiratoria , Índice de Severidad de la Enfermedad , Humanos , Síndrome de Dificultad Respiratoria/mortalidad , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/genética , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Anciano , Adulto , Curva ROC , Citocinas/sangre , Citocinas/metabolismo
2.
Environ Toxicol ; 39(3): 1737-1746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050961

RESUMEN

Breast cancer (BRCA) is the most common malignancies worldwide with increasing rate. Dolichol phosphate mannose synthase (DPMS) is a critical mannosyltransferase involved in the posttranslational modification of proteins. At present, there is limited knowledge regarding the function of DPMS in breast cancer. In this study, silica analysis in multiple datasets found that dolichyl-phosphate mannosyltransferase subunit 2 (DPM2) is an unfavorable prognostic marker, suggesting its oncogenic role. Cell counting kit-8 and apoptosis assays show that DPM2-silenced cancer cells exhibit decreased growth potential and enhanced cell death rate. Further, transwell and wound healing assays show reduced invasion and migration capabilities in DPM2 knockdown groups, xenograft nude mice model demonstrated smaller tumor volume in DPM2 silenced BC cells. Then, the underlying downstream mechanism of DPM2 in BC was predicted and analyzed, highlighting classical tumorigenic pathways like JAK/STAT signaling pathway and oxidative phosphorylation activated in the cancer group. Finally, ChIP-seq analysis, expression correlation analysis, inhibitor treatment, and dual luciferase assays show that DPM2 is transcriptionally activated by estrogen receptor1 (ESR1). The results show that high expression of DPM2 mRNA is significantly correlated with shorter overall survival (OS) and disease-free survival (DFS) in breast cancer patients, and in vitro knockdown of DPM2 can significantly inhibit the malignant phenotypes of cells, including proliferation, invasion, migration, and apoptosis. These results suggest that DPM2 may play an important role in breast cancer. Altogether, we first uncovered the tumorigenic and prognostic role of DPM2 in breast cancer, cellular assays, and bioinformatics analysis highlighted DPM2 as oncogene via inhibited cancer-related signaling pathways in breast cancer. Besides, DPM2 is transcriptionally activated by ESR1, the signaling axis of ESR1/DPM2 provides a new strategy for BC-targeted therapy.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Succinimidas , Ratones , Animales , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Ratones Desnudos , Pronóstico , Estrógenos/metabolismo , Oncogenes , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA