Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398539

RESUMEN

Sulfur hexafluoride (SF6), which survives in the atmosphere for an extremely long period of time, is the most potent greenhouse gas regulated under the Kyoto Protocol. So, the accurate monitoring of atmospheric SF6 plays an important role in the study of the control policies for reducing greenhouse gas emissions. The instruments for SF6 measurement are typically calibrated using certified reference materials. The concentrations of the commercially available SF6 reference materials usually have a broad range, from 1 µmol/mol to 6000 µmol/mol. Some characteristics including sensitivity, linear range, relative standard deviation, and accuracy are crucial for the determination of SF6 in such a broad concentration range. Therefore, the selection of a proper detector for the accurate determination of SF6 with such a broad range is extremely important to establish a gas chromatography (GC) method for developing SF6 reference materials. In this paper, several typical GC methods with different detectors, including a thermal conductivity detector (TCD), a pulsed discharge helium ionization detector (PDHID), and a flame photometric detector (FPD), were carefully established for the accurate determination of SF6 with different concentrations. The results show that an FPD detector has a relatively narrow linearity range, thus a quadratic equation should be established for building a calibration curve. The PDHID and TCD have good linearity with coefficients of 1.0000 in the concentration range of 10-100 µmol/mol (using a PDHID), and 100-1000 µmol/mol (using a TCD), respectively. Further considering the measurement errors of indication results, the PDHID is suitable for SF6 measurement when the concentrations are below 100 µmol/mol, whereas the TCD is suitable for SF6 measurement when the concentrations are over 100 µmol/mol. These results provide useful guidance in choosing an appropriate GC detector for the accurate determination of SF6, which are especially very helpful for developing SF6 reference materials.

2.
Cell Biosci ; 14(1): 2, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178181

RESUMEN

BACKGROUND: Attention provides the foundation for cognitions, which was shown to be affected by microwave (MW) radiation. With the ubiquitous of microwaves, public concerns regarding the impact of MW radiation on attention has hence been increased. Our study aims to investigate the potential effect and mechanism of acute microwave exposure on attention. RESULTS: We identified obvious impairment of attention in mice by the five-choice serial reaction time (5-CSRT) task. Proteomic analysis of the cerebrospinal fluid (CSF) revealed neuroinflammation and microglial activation potentially due to acute MW exposure. Moreover, biochemical analysis further confirmed microglial activation in the prefrontal cortex (PFC) of mice subjected to acute MW exposure. Finally, minocycline, a commercially available anti-inflammatory compound, attenuated neuroinflammation, inhibited the upregulation of N-methyl-D-aspartic acid receptor (NMDAR) including NR2A and NR2B, and also accelerated the attentional recovery after MW exposure. CONCLUSIONS: We believe that microglial activation and NMDAR upregulation likely contribute to inattention induced by acute MW exposure, and we found that minocycline may be effective in preventing such process.

3.
Oral Dis ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37771213

RESUMEN

Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.

4.
Matrix Biol ; 118: 69-91, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36918086

RESUMEN

Fibrotic scars appear after spinal cord injury (SCI) and are mainly composed of fibroblasts and excess extracellular matrix (ECM), including different types of collagen. The temporal and spatial distribution and role of excess collagens and ECM after SCI are not yet fully understood. Here, we identified that the procollagen type I C-terminal propeptide (PICP), a marker of collagen type I deposition, and bone morphogenetic protein 1 (BMP1), a secreted procollagen c-proteinase (PCP) for type I collagen maturation, were significantly elevatedin cerebrospinal fluid of patients with SCI compared with healthy controls, and were associated with spinal cord compression and neurological symptoms. We revealed the deposition of type I collagen in the area damaged by SCI in mice and confirmed that BMP1 was the only expressed PCP and induced collagen deposition. Furthermore, transforming growth factor-ß (TGF-ß), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) can activate the expression of BMP1. However, inhibition of BMP1 at the acute phase eliminated fibrotic scars in the damaged area and inhibited activation and enrichment of astrocytes, which made the damage difficult to repair and increased hematoma. Unexpectedly, knockdown of Bmp1 by adeno-associated virus or the inhibition of BMP1 biological function by specific inhibitors and monoclonal antibodies at different time points after injury led to distinct therapeutic effects. Only delayed inhibition of BMP1 improved axonal regeneration and myelin repair at the subacute stage post-injury, and led to the recovery of motor function, suggesting that scarring had a dual effect. Early inhibition of the scarring was not conducive to limiting inflammation, while excessive scar formation inhibited the growth of axons. After SCI, the collagen deposition indicators increased in both human cerebrospinal fluid and mouse spinal cord. Therefore, suppression of BMP1 during the subacute phase improves nerve function after SCI and is a potential target for scar reduction.


Asunto(s)
Colágeno Tipo I , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Proteína Morfogenética Ósea 1/genética , Proteína Morfogenética Ósea 1/metabolismo , Colágeno Tipo I/metabolismo , Cicatriz/patología , Colágeno/genética , Colágeno/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Fibrosis
5.
Redox Biol ; 62: 102682, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36963288

RESUMEN

Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.


Asunto(s)
Daño por Reperfusión , Isquemia de la Médula Espinal , Animales , Ratones , Proteínas de Ciclo Celular , Proteínas Activadoras de GTPasa , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Isquemia de la Médula Espinal/complicaciones , Isquemia de la Médula Espinal/prevención & control
6.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835251

RESUMEN

Alzheimer's disease (AD) is the most frequent cause of cognitive impairment in middle-aged and older populations. There is a lack of drugs that demonstrate significant efficacy in AD, so the study of the pathogenesis of AD is of great importance. More efficacious interventions are needed, as reflected by our population's fast aging. Synaptic plasticity is the capacity of neurons to adjust their connections, and it is strongly tied to learning and memory, cognitive function, and brain injury recovery. Changes in synaptic strength, such as long-term potentiation (LTP) or inhibition (LTD), are thought to represent the biological foundation of the early stages of learning and memory. The results of numerous studies confirm that neurotransmitters and their receptors play an important role in the regulation of synaptic plasticity. However, so far, there is no definite correlation between the function of neurotransmitters in aberrant neural oscillation and AD-related cognitive impairment. We summarized the AD process to understand the impact of neurotransmitters in the progression and pathogenesis of AD, including the current status of neurotransmitter target drugs, and the latest evidence of neurotransmitters' function and changes in the AD process.


Asunto(s)
Enfermedad de Alzheimer , Persona de Mediana Edad , Humanos , Anciano , Animales , Enfermedad de Alzheimer/patología , Plasticidad Neuronal , Potenciación a Largo Plazo , Aprendizaje , Neurotransmisores/farmacología , Modelos Animales de Enfermedad , Hipocampo
7.
Bull Environ Contam Toxicol ; 108(5): 819-823, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35386005

RESUMEN

Fine particulate matter (named PM2.5) has become a prominent and dangerous form of air pollution. The chemical composition of PM2.5 mainly includes inorganic elements, water soluble ions, elemental carbon (EC), organic carbon (OC), and organic compounds. The detection method for inorganic elements mainly includes X ray fluorescence, inductively coupled plasma-atomic emission spectrometry, and inductively coupled plasma mass spectrometry. As for water soluble ions, ion chromatography is the most common detection method. EC and OC are usually detected by carbon analyzer. The organic compounds are determined by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. In this paper, the merits and drawbacks of each analytical methods for the determination of PM2.5 chemical composition are summarized. This review also includes our discussion on the improvement of the analytical accuracy for the determination of PM2.5 chemical composition owing to the development of reference materials.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente/métodos , Iones/análisis , Compuestos Orgánicos/análisis , Material Particulado/análisis , Estaciones del Año , Agua/química
8.
Small ; 17(50): e2103938, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34677904

RESUMEN

Layered 2D transition metal dichalcogenides (TMDCs) exhibited fascinating nonlinear optical (NLO) properties for constructing varied promising optoelectronics. However, exploring the desired 2D materials with both superior nonlinear absorption and ultrafast response in broadband spectra remain the key challenges to harvest their greatest potential. Here, based on synthesizing 2D PdSe2 films with the controlled layer number, the authors systematically demonstrated the broadband giant NLO performance and ultrafast excited carrier dynamics of this emerging material under femtosecond visible-to-near-infrared laser-pulse excitation (400-1550 nm). Layer-dependent and wavelength-dependent evolution of optical bandgap, nonlinear absorption, and photocarrier dynamics in the obtained 2D PdSe2 are clearly revealed. Specially, the transition from semiconducting to semimetallic PdSe2 induced dramatic changes of their interband absorption-relaxation process. This work makes 2D PdSe2 more competitive for future ultrafast photonics and also opens up a new avenue for the optical performance optimization of various 2D materials by rational design of these materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA