Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Opin Ther Targets ; 27(10): 927-937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37747065

RESUMEN

INTRODUCTION: Influenza A virus (IAV) is highly contagious and causes respiratory diseases in birds, mammals, and humans. Some strains of IAV, whether from human or avian sources, have developed resistance to existing antiviral drugs. Therefore, the discovery of new influenza antiviral drugs and therapeutic approaches is crucial. Recent studies have shown that galectins (Gal), a group of ß-galactose-binding lectins, play a role in regulating various viral infections, including IAVs. AREAS COVERED: This review provides an overview of the roles of different galectins in IAV infection. We discuss the characteristics of galectins, their impact on IAV infection and spread, and highlight their positive or negative regulatory functions and potential mechanisms during IAV infection. Furthermore, we explore the potential application of galectins in IAV therapy. EXPERT OPINION: Galectins were first identified in the mid-1970s, and currently, 15 mammalian galectins have been identified. While all galectin members possess the carbohydrate recognition domain (CRD) that interacts with ß-galactoside, their regulatory functions vary in different DNA or RNA virus infections. Certain galectin members have been found to regulate IAV infection through diverse mechanisms. Therefore, a comprehensive understanding of their roles in IAV infection is essential, as it may pave the way for novel therapeutic strategies.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/genética , Galectinas , Antivirales/farmacología , Mamíferos
2.
J Infect Public Health ; 16(10): 1625-1642, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37595484

RESUMEN

Dengue is caused by the dengue virus (DENVs) infection and clinical manifestations include dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). Due to a lack of antiviral drugs and effective vaccines, several therapeutic and control strategies have been proposed. A systemic literature review was conducted according to PRISMA guidelines to select proper references to give an overview of DENV infection. Results indicate that understanding the virus characteristics and epidemiology are essential to gain the basic and clinical knowledge as well as dengue disseminated pattern and status. Different factors and mechanisms are thought to be involved in the presentation of DHF and DSS, including antibody-dependent enhancement, immune dysregulation, viral virulence, host genetic susceptibility, and preexisting dengue antibodies. This study suggests that dissecting pathogenesis and risk factors as well as developing different types of therapeutic and control strategies against DENV infection are urgently needed.


Asunto(s)
Antivirales , Dengue , Humanos , Antivirales/uso terapéutico , Dengue/epidemiología , Dengue/terapia , Predisposición Genética a la Enfermedad , Factores de Riesgo , Virulencia
3.
Glycobiology ; 33(4): 311-324, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36504105

RESUMEN

DC-SIGN and Galectin-3 are two different lectins and have been reported to participate in regulation of several virus infections. WHO has pointed that H5N1 and H7N9 avian influenza viruses (AIVs) play continuous threats to global health. AIV hemagglutinin (HA) protein-a highly glycosylated protein-mediates influenza infection and was proposed to have DC-SIGN and Gal3 interactive domains. This study aims to address the individual and collaborative roles of DC-SIGN and Gal3 toward AIVs infection. Firstly, A549 cells with DC-SIGN expression or Gal3-knockdown, via lentiviral vector-mediated CD209 gene expression or LGALS-3 gene knockdown, respectively were generated. Quantitative reverse transcription PCR (qRT-PCR) results indicated that DC-SIGN expression and Gal3 knockdown in A549 cells significantly promoted and ameliorated HA or NP gene expression, respectively after H5N1 and H7N9-reverse genetics (RG) virus postinfections (P < 0.05). Similar results observed in immunoblotting, indicating that DC-SIGN expression significantly facilitated H5N1-RG and H7N9-RG infections (P < 0.05), whereas Gal3 knockdown significantly reduced both viral infections (P < 0.05). Furthermore, we found that DC-SIGN and Gal3 co-expression significantly enhanced infectivity of both H5N1-RG and H7N9-RG viruses (P < 0.01) and higher regulatory capabilities by DC-SIGN and Gal3 in H5N1-RG than H7N9-RG were noted. The promoting effect mainly relied on exogenous Gal3 and DC-SIGN directly interacting with the HA protein of H5N1 or H7N9 AIVs, subsequently enhancing virus infection. This study sheds light on two different lectins individually and collaboratively regulating H5N1 and H7N9 AIVs infection and suggests that inhibitors against DC-SIGN and Gal3 interacting with HA could be utilized as alternative antiviral strategies.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Animales , Hemaglutininas , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Galectina 3/genética , Proteínas del Envoltorio Viral , Envoltura Viral
4.
Bioeng Transl Med ; : e10410, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36248235

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in late 2019 leading to the COVID-19 disease pandemic that triggered socioeconomic turmoil worldwide. A precise, prompt, and affordable diagnostic assay is essential for the detection of SARS-CoV-2 as well as its variants. Antibody against SARS-CoV-2 spike (S) protein was reported as a suitable strategy for therapy and diagnosis of COVID-19. We, therefore, developed a quick and precise phase-sensitive surface plasmon resonance (PS-SPR) biosensor integrated with a novel generated anti-S monoclonal antibody (S-mAb). Our results indicated that the newly generated S-mAb could detect the original SARS-CoV-2 strain along with its variants. In addition, a SARS-CoV-2 pseudovirus, which could be processed in BSL-2 facility was generated for evaluation of sensitivity and specificity of the assays including PS-SPR, homemade target-captured ELISA, spike rapid antigen test (SRAT), and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Experimentally, PS-SPR exerted high sensitivity to detect SARS-CoV-2 pseudovirus at 589 copies/ml, with 7-fold and 70-fold increase in sensitivity when compared with the two conventional immunoassays, including homemade target-captured ELISA (4 × 103 copies/ml) and SRAT (4 × 104 copies/ml), using the identical antibody. Moreover, the PS-SPR was applied in the measurement of mimic clinical samples containing the SARS-CoV-2 pseudovirus mixed with nasal mucosa. The detection limit of PS-SPR is calculated to be 1725 copies/ml, which has higher accuracy than homemade target-captured ELISA (4 × 104 copies/ml) and SRAT (4 × 105 copies/ml) and is comparable with qRT-PCR (1250 copies/ml). Finally, the ability of PS-SPR to detect SARS-CoV-2 in real clinical specimens was further demonstrated, and the assay time was less than 10 min. Taken together, our results indicate that this novel S-mAb integrated into PS-SPR biosensor demonstrates high sensitivity and is time-saving in SARS-CoV-2 virus detection. This study suggests that incorporation of a high specific recognizer in SPR biosensor is an alternative strategy that could be applied in developing other emerging or re-emerging pathogenic detection platforms.

5.
Int J Infect Dis ; 122: 991-995, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35902024

RESUMEN

OBJECTIVES: Monkeypox has recently been detected outside African countries. This study aimed to report and analyze the first case of monkeypox virus infection in Taiwan. METHODS: The global epidemiological information was collected from the World Health Organization (WHO) and US Centers for Disease Control and Prevention (CDC). The data from the first confirmed Taiwanese monkeypox case was obtained from Taiwan Centers for Disease Control. Monkeypox diagnosis and prevention strategies were obtained from WHO guidelines on monkeypox. Phylogenetic tree analysis and sequence alignment and comparison were used to identify the phylogeny and single nucleotide polymorphism (SNP) characterization. RESULTS: Epidemiological data indicated that since 2013, monkeypox has caused outbreaks outside African countries through contact with infected animals and international travels. Recently, two confirmed monkeypox cases were reported in Singapore and South Korea. On June 24, 2022, Taiwan CDC reported the first confirmed case of monkeypox virus infection in a 20-year-old man who returned from Germany, from January to June 2022. This is the third confirmed case of an imported monkeypox infection in Asia. Phylogenetic analysis demonstrated that this imported monkeypox virus belonged to the West African clade and is clustered with the 2022 European outbreak monkeypox isolates. Full-length sequence analysis indicates that this virus contains 51 SNPs, and has five variant SNPs compared with the recent outbreak strains. CONCLUSION: This study suggests that active surveillance, enhancing border control, and the development of vaccines and antiviral drugs are urgently required to prevent and control the burden of monkeypox disease.


Asunto(s)
Enfermedades Transmisibles Importadas , Mpox , Animales , Brotes de Enfermedades , Humanos , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , Filogenia , Taiwán/epidemiología
6.
Biomed Pharmacother ; 144: 112304, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634560

RESUMEN

Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.


Asunto(s)
Vacunas contra el Dengue/uso terapéutico , Virus del Dengue/inmunología , Dengue/prevención & control , Desarrollo de Vacunas , Proteínas del Envoltorio Viral/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Dengue/inmunología , Dengue/virología , Vacunas contra el Dengue/efectos adversos , Vacunas contra el Dengue/inmunología , Virus del Dengue/genética , Virus del Dengue/patogenicidad , Humanos , Resultado del Tratamiento , Eficacia de las Vacunas , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/uso terapéutico , Vacunas de ADN/inmunología , Vacunas de ADN/uso terapéutico , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/uso terapéutico , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , Proteínas del Envoltorio Viral/genética , Proteínas no Estructurales Virales/genética
7.
Biomed Pharmacother ; 139: 111713, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34243634

RESUMEN

Galectins, are ß-galactoside binding lectins expressed in numerous cells and are known to regulate various immune responses and cellular physiological functions. Galectins have been reported to participate in the regulation of several viral infections via carbohydrate­dependent/independent manner. Galectins have displayed various regulatory functions on viral infection, however, the detailed mechanism remains unclear. More recently, some members of galectins have been reported to regulate influenza A virus (IAV) infection. In this review, we aim to analyze and summarize current findings regarding the role of galectins in IAV infection and their antiviral potential therapeutic application in the treatment of IAVs. The eligible articles were selected according to the PRISMA guidelines. Results indicate that Galectin-1(Gal-1), Galectin-3(Gal-3) and Galectin-9 (Gal-9) were found as the predominant galectins reported to participate in the regulation of IAVs infection. The inhibitory regulation of IAVs by these galectins occurred mainly through extracellular binding to glycosylated envelope proteins, further blocking the interaction between influenza envelope and sialic acid receptor, interacting with ligands or receptors on immune cells to trigger immunol or cellular response against IAVs, and endogenously interacting cellular components in the cytoplasm to activate inflammasome and autophagy. This study offers information regarding the multiple roles of galectins observed in IAVs infection and suggest that galectins has the potential to be used as therapeutic agents for IAVs.


Asunto(s)
Antivirales/farmacología , Galectinas/farmacología , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Animales , Autofagia/efectos de los fármacos , Citoplasma/efectos de los fármacos , Humanos , Inflamasomas/efectos de los fármacos
8.
Pharmaceuticals (Basel) ; 14(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065500

RESUMEN

Animal lectins are proteins with carbohydrate recognition activity. Galectins, the ß-galactoside binding lectins, are expressed in various cells and have been reported to regulate several immunological and physiological responses. Recently, some galectins have been reported to regulate some viral infections, including influenza A virus (IAV); however, the mechanism is still not fully understood. Thus, we aim to review systemically the roles of galectins in their antiviral functions against IAVs. The PRISMA guidelines were used to select the eligible articles. Results indicated that only Galectin-1, Galectin-3, and Galectin-9 were reported to play a regulatory role in IAV infection. These regulatory effects occur extracellularly, through their carbohydrate recognition domain (CRD) interacting with glycans expressed on the virus surface, as well as endogenously, in a cell-cell interaction manner. The inhibition effects induced by galectins on IAV infection were through blocking virus-host receptors interaction, activation of NLRP-3 inflammasome, augment expression of antiviral genes and related cytokines, as well as stimulation of Tim-3 related signaling to enhance virus-specific T cells and humoral immune response. Combined, this study concludes that currently, only three galectins have reported antiviral capabilities against IAV infection, thereby having the potential to be applied as an alternative anti-influenza therapeutic strategy.

9.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451024

RESUMEN

DC-SIGN, a C-type lectin mainly expressed in dendritic cells (DCs), has been reported to mediate several viral infections. We previously reported that DC-SIGN mediated H5N1 influenza A virus (AIVs) infection, however, the important DC-SIGN interaction with N-glycosylation sites remain unknown. This study aims to identify the optimal DC-SIGN interacting N-glycosylation sites in HA proteins of H5N1-AIVs. Results from NetNGlyc program analyzed the H5 hemagglutinin sequences of isolates during 2004-2020, revealing that seven and two conserved N-glycosylation sites were detected in HA1 and HA2 domain, respectively. A lentivirus pseudotyped A/Vietnam/1203/04 H5N1 envelope (H5N1-PVs) was generated which displayed an abundance of HA5 proteins on the virions via immuno-electron microscope observation. Further, H5N1-PVs or reverse-genetics (H5N1-RG) strains carrying a serial N-glycosylated mutation was generated by site-directed mutagenesis assay. Human recombinant DC-SIGN (rDC-SIGN) coated ELISA showed that H5N1-PVs bound to DC-SIGN, however, mutation on the N27Q, N39Q, and N181Q significantly reduced this binding (p < 0.05). Infectivity and capture assay demonstrated that N27Q and N39Q mutations significantly ameliorated DC-SIGN mediated H5N1 infection. Furthermore, combined mutations (N27Q&N39Q) significantly waned the interaction on either H5N1-PVs or -RG infection in cis and in trans (p < 0.01). This study concludes that N27 and N39 are two essential N-glycosylation contributing to DC-SIGN mediating H5N1 infection.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Susceptibilidad a Enfermedades , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Gripe Humana/virología , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Sustitución de Aminoácidos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H3N2 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/ultraestructura , Mutación , Filogenia
10.
Pathogens ; 9(6)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485969

RESUMEN

HIV-1 CRF07_BC is a B' and C subtype recombinant emerging virus and many of its viral characteristics remain unclear. Galectin-3 (Gal3) is a ß-galactose binding lectin that has been reported as a pattern recognition receptor (PRR) and is known to mediate adhesion between cells and microbes. This study aims to examine the viral characteristics of HIV-1 CRF07_BC virus and the role of extracellular galectin-3 in HIV-1 CRF07_BC infection. A total of 28 HIV-1+ injecting drug users (IDUs) were recruited and 24 (85.7%) were identified as HIV-1 CRF07_BC. Results indicate that significant higher serum galectin-3 was measured in CRF07_BC infected patients and CRF07_BC infection triggered significant galectin-3 expression (p < 0.01). Viral characteristics demonstrate that CRF07_BC virions display a higher level of envelope gp120 spikes. The virus infectivity assay demonstrated that co-treatment with galectin-3 significantly promoted CRF07_BC attachment and internalization (p < 0.01). A co-immunoprecipitation assay showed that pulldown galectin-3 co-precipitated both CD4 and gp120 proteins. Results from an enzyme-linked immunosorbent assay (ELISA) indicate that the galectin-3 promoting effect occurs through enhancement of the interaction between gp120 and CD4. This study suggests that CRF07_BC was predominant in HIV-1+ IDUs and CRF07_BC utilized extracellular galectin-3 to enhance its infectivity via stabilization of the gp120-CD4 interaction.

11.
Sci Rep ; 9(1): 19783, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875015

RESUMEN

Chronic kidney disease is an epidemiologically identified risk factor for development of severe dengue in dengue-affected patients. However, available data on the immune pathogenesis in end stage renal disease (ESRD) patients affected by dengue is insufficient. We performed an in vitro study to evaluate the sequential immunological reactions and viral load in dengue virus type 2-infected mononuclear cells of patients with ESRD (n = 34) and in healthy controls (n = 30). The concentrations of interleukins (IL)-1 receptor antagonist (Ra), IL-2, IL-6, IL-8, IL-10, IL-12p40, granulocyte-macrophage colony-stimulating factor (GM-CSF), monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1b (MIP-1b), vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α and viral load cycle threshold (Ct) were measured in the dengue virus type 2-infected mononuclear cells at 6 h, 24 h, 48 h, and 72 h post-infection. We found in the ESRD group significantly higher GM-CSF and IL-2 levels at 6 h post-infection. However, IL-8, IL-10, IL-12p40, TNF-α, MCP-1, and MIP-1b levels were found significantly lower than in the control group. At 24 h, 48 h, and 72 h post-infection, significantly lower levels of IL-1Ra, IL-6, IL-8, IL-10, IL-12p40, TNF-α, MCP-1, and MIP-1b were detected in ESRD group. Concentration of VEGF at 24 h and 48 h, and of GM-CSF at 48 h and 72 h were also found to be lower in ESRD group than in control group. Compared with controls, the viral load Ct values were significantly lower in ESRD group at 6 h and 24 h post-infection No significant difference in viral load Ct values between two groups was found at 48 h and 72 h post-infection. Our study discloses that the expression of immune mediators of dengue-infected mononuclear cells is impaired in ESRD patients.


Asunto(s)
Citocinas/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Fallo Renal Crónico/inmunología , Leucocitos Mononucleares/inmunología , Adulto , Dengue/complicaciones , Femenino , Humanos , Fallo Renal Crónico/complicaciones , Masculino , Persona de Mediana Edad
12.
Biomed Res Int ; 2013: 965853, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24078930

RESUMEN

It has been reported that diabetes mellitus (DM) was an epidemiologically identified risk factor for development of dengue hemorrhagic fever (DHF)/severe dengue in dengue virus (DENV) affected patients, and T helper 2 (Th2) cytokines such as interleukin-4 (IL-4) and IL-10 each plays an important role in the immunopathogenesis of DHF in studies involving general population. To better understand the relationship between these epidemiological and immunological findings, we performed an in vitro study evaluating the sequential immunological reactions and viral load in the DENV infected mononuclear cells of adults with type 2 DM (T2DM group, n = 33) and normal adults (control group, n = 29). We found in the T2DM group significantly higher IL-4 level on the first (P = 0.049) and the third (P = 0.022) postinfection days, while higher IL-10 (P = 0.042) and granulocyte-macrophage colony-stimulating factor (GM-CSF) (P = 0.009) were detected on the third postinfection day. No significant difference in DENV viral load between the cultured mononuclear cells from both groups was found on the first and third post-infection days. These data immunologically suggest that patients with T2DM are at higher risk for development of DHF/severe dengue and strengthen the previously epidemiologically identified role of DM being a predictive risk factor for progressing into DHF/severe dengue in DENV-affected patients.


Asunto(s)
Virus del Dengue/fisiología , Diabetes Mellitus Tipo 2/virología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Interleucina-10/biosíntesis , Interleucina-4/biosíntesis , Leucocitos Mononucleares/virología , Replicación Viral/fisiología , Estudios de Casos y Controles , Quimiocina CCL2/metabolismo , Demografía , Dengue/complicaciones , Dengue/virología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Espacio Intracelular/virología , Masculino , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/metabolismo , Carga Viral
13.
Int J Nanomedicine ; 7: 5215-34, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071392

RESUMEN

Gold nanoparticles modified with the nuclear localization signal from simian virus 40 large T antigen (GNP-PEG/SV40) accumulate on the cytoplasmic side of the nuclear membrane in HeLa cells. Accumulation of GNP-PEG/SV40 around the nucleus blocks nucleocytoplasmic transport and prevents RNA export and nuclear shuttling of signaling proteins. This long-term blockage of nucleocytoplasmic transport results in cell death. This cell death is not caused by apoptosis or necrosis because caspases 3 and 9 are not activated, and the expression of annexin V/propidium iodide is not enhanced in HeLa cells after treatment. Using transmission electron microscopy, autophagosomes and autolysosomes were seen to appear after 72 hours of treatment with GNP-PEG/SV40. Increasing levels of enhanced green fluorescent protein-microtubule-associated protein 1 light chain 3 (EGFP-LC3)-positive punctate and LC3-II confirmed GNP-PEG/SV40-induced autophagy. In SiHa cells, treatment did not induce accumulation of GNP-PEG/SV40 around the nucleus and autophagy. Treating cells with wheat germ agglutinin, a nuclear pore complex inhibitor, induced autophagy in both HeLa and SiHa cells. GNP-PEG/SV40-induced autophagy plays a role in cell death, not survival, and virus-mediated small hairpin RNA silencing of Beclin-1 attenuates cell death. Taken together, the results indicate that long-term blockade of nucleocytoplasmic transport results in autophagic cell death.


Asunto(s)
Autofagia/fisiología , Núcleo Celular/metabolismo , Oro/química , Nanopartículas del Metal/química , Nanocápsulas/química , Oligopéptidos/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/fisiología , Autofagia/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Células HeLa , Humanos
14.
Chem Commun (Camb) ; (37): 4430-2, 2008 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-18802580

RESUMEN

We have successfully transformed the infectious E. coli bacteria into biocompatible bacteria@Au composites for photothermal therapy.


Asunto(s)
Bacterias/metabolismo , Oro/metabolismo , Luz , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA