Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Int J Nanomedicine ; 19: 6015-6033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911504

RESUMEN

Wound healing in diabetic patients is frequently hampered. Adipose-derived stem cell exosomes (ADSC-eoxs), serving as a crucial mode of intercellular communication, exhibit promising therapeutic roles in facilitating wound healing. This review aims to comprehensively outline the molecular mechanisms through which ADSC-eoxs enhance diabetic wound healing. We emphasize the biologically active molecules released by these exosomes and their involvement in signaling pathways associated with inflammation modulation, cellular proliferation, vascular neogenesis, and other pertinent processes. Additionally, the clinical application prospects of the reported ADSC-eoxs are also deliberated. A thorough understanding of these molecular mechanisms and potential applications is anticipated to furnish a theoretical groundwork for combating diabetic wound healing.


Asunto(s)
Tejido Adiposo , Exosomas , Células Madre , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/fisiología , Tejido Adiposo/citología , Animales , Diabetes Mellitus/terapia , Transducción de Señal , Proliferación Celular/efectos de los fármacos
2.
Adv Sci (Weinh) ; : e2402428, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852190

RESUMEN

Sulfur-containing amino acids and peptides play critical roles in organisms. Thiol-ene reactions between the thiol residues of L-cysteine and the alkenyl fragments in the designed coupling partners serve as primary tools for constructing C─S bonds in the synthesis of unnatural sulfur-containing amino acid derivatives. These reactions are favored due to the preference for hydrogen transfer from thiol to ß-sulfanyl carbon radical intermediates. In this paper, the study proposes utilizing carbon-centered radicals stabilized by the capto-dative effect, generated under photocatalytic conditions from N-aryl glycine derivatives. The aim is to compete with the thiol hydrogen, enabling radical C─C bond formation with ß-sulfanyl carbon radicals. This protocol is robust in the presence of air and water, offers significant potential as a modular and efficient platform for synthesizing sulfur-containing amino acids and modifying peptides, particularly with abundant disulfides and styrenes.

3.
Pharmgenomics Pers Med ; 17: 251-270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803444

RESUMEN

Purpose: Emerging evidence demonstrates the vital role of aging and long non-coding RNAs (lncRNAs) in breast cancer (BC) progression. Our study intended to develop a prognostic risk model based on aging-related lncRNAs (AG-lncs) to foresee BC patients' outcomes. Patients and Methods: 307 aging-related genes (AGs) were sequenced from the TCGA project. Then, 697 AG-lncs were identified by the co-expression analysis with AGs. Using multivariate and univariate Cox regression analysis, and LASSO, 6 AG-lncs, including al136531.1, mapt-as1, al451085.2, otud6b-as1, tnfrsf14-as1, and linc01871, were validated to compute the risk score and establish a risk signature. Expression levels of al136531.1, mapt-as1, al451085.2, tnfrsf14-as1, and linc01871 were higher in low-risk BC patients, whereas otud6b-as1 expression was higher in high-risk BC patients. In the training and testing set, high-risk patients performed shorter PFI, OS, and DFS than low-risk patients. Results: Our risk signature had the highest concordance index among other established prognostic signatures and displayed ideal predictive ability for 1-, 3- and 5-year patient OS in the nomogram. Additionally, BC patients with different risk score levels showed different immune statuses and responses to immunotherapy via GSEA, ssGSEA, ESTIMATE algorithm, and TIDE algorithm analysis. Of note, the qRT-PCR analysis validated that these 6 AG-lncs expressed quite differentially in BC tissues at various clinical stages. Conclusion: The risk signature of 6 AG-lncs might offer a novel prognostic biomarker and promisingly enhance BC immunotherapy's effectiveness.

4.
Int J Biol Macromol ; 270(Pt 1): 132026, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704074

RESUMEN

Multiple phenolic substances have been shown to promote SIRT3 expression, however, few studies have focused on the effects of these phenolics on SIRT3 enzyme activity. This study constructed a variety of reaction systems to elucidate the mechanisms by which different polyphenols affect SIRT3 enzyme activity. The results showed that acP53317-320 was the most suitable substrate among the five acetylated peptide substrates (Kcat/Km = 74.85 ± 1.86 M-1•s-1). All the phenolic compounds involved in the experiment inhibited the enzymatic activity of SIRT3, and the lowest IC50 among them was quercetin (0.12 ± 0.01 mM) and the highest was piceatannol (1.29 ± 0.08 mM). Their inhibition types were mainly competitive and mixed. In addition, piceatannol was found to be a natural SIRT3 agonist by enzyme kinetic analysis and validation of deacetylation efficiency. This study will provide a useful reference for polyphenol modulation of SIRT3 dosage, as well as the development and application of polyphenol-based SIRT3 activators and agonists.


Asunto(s)
Polifenoles , Sirtuina 3 , Sirtuina 3/metabolismo , Polifenoles/farmacología , Polifenoles/química , Acetilación , Humanos , Cinética , Estilbenos/farmacología , Estilbenos/química
5.
Pest Manag Sci ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625031

RESUMEN

BACKGROUND: To discover novel fungicide candidates, five series of novel norbornene hydrazide, bishydrazide, oxadiazole, carboxamide and acylthiourea derivatives (2a-2t, 3a-3f, 4a-4f, 5a-5f and 7a-7f) were designed, synthesized and assayed for their antifungal activity toward seven representative plant fungal pathogens. RESULTS: In the in vitro antifungal assay, some title norbornene derivatives presented good antifungal activity against Botryosphaeria dothidea, Sclerotinia sclerotiorum and Fusarium graminearum. Especially, compound 2b exhibited the best inhibitory activity toward B. dothidea with the median effective concentration (EC50) of 0.17 mg L-1, substantially stronger than those of the reference fungicides boscalid and carbendazim. The in vivo antifungal assay on apples revealed that 2b had significant curative and protective effects, both of which were superior to boscalid. In the preliminary antifungal mechanism study, 2b was able to injure the surface morphology of hyphae, destroy the cell membrane integrity and increase the intracellular reactive oxygen species (ROS) level of B. dothidea. In addition, 2b could considerably inhibit the laccase activity with the median inhibitory concentration (IC50) of 1.02 µM, much stronger than that of positive control cysteine (IC50 = 35.50 µM). The binding affinity and interaction mode of 2b with laccase were also confirmed by molecular docking. CONCLUSION: This study presented a promising lead compound for the study of novel laccase inhibitors as fungicidal agrochemicals, which demonstrate significant anti-B. dothidea activity and laccase inhibitory activity. © 2024 Society of Chemical Industry.

6.
Chem Biodivers ; 21(6): e202302033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616167

RESUMEN

To explore more potential fungicides with new scaffolds, thirty-seven norbornene carboxamide/sulfonamide derivatives were designed, synthesized, and assayed for inhibitory activity against six plant pathogenic fungi and oomycetes. The preliminary antifungal assay suggested that the title derivatives showed moderate to good antifungal activity against six plant pathogens. Especially, compound 6 e presented excellent in vitro antifungal activity against Sclerotinia sclerotiorum (EC50=0.71 mg/L), which was substantially stronger than pydiflumetofen. In vivo antifungal assay indicated 6 e displayed prominent protective and curative effects on rape leaves infected by S. sclerotiorum. The preliminary mechanism research displayed that 6 e could damage the surface morphology and inhibit the sclerotia formation of S. sclerotiorum. In addition, the in vitro enzyme inhibition bioassay indicated that 6 e displayed pronounced laccase inhibition activity (IC50=0.63 µM), much stronger than positive control cysteine. Molecular docking elucidated the binding modes between 6 e and laccase. The bioassay results and mechanism investigation demonstrated that this class of norbornene carboxamide/sulfonamide derivatives could be promising laccase inhibitors for novel fungicide development.


Asunto(s)
Lacasa , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Norbornanos , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Lacasa/metabolismo , Lacasa/antagonistas & inhibidores , Lacasa/química , Relación Estructura-Actividad , Norbornanos/química , Norbornanos/farmacología , Norbornanos/síntesis química , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Ascomicetos/efectos de los fármacos , Estructura Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Dosis-Respuesta a Droga
7.
Front Immunol ; 15: 1354040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529273

RESUMEN

Introduction: Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods: A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results: The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion: In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.


Asunto(s)
Antioxidantes , Taraxacum , Animales , Antioxidantes/farmacología , Pollos/microbiología , Suplementos Dietéticos , Ácidos Grasos Volátiles , Aves de Corral
8.
Curr Radiopharm ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532606

RESUMEN

BACKGROUND: Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignant tumor with a high degree of malignancy, invasiveness, and metastasis rate. Radiotherapy, as an important adjuvant therapy for HNSCC, can reduce the postoperative recurrence rate and improve the survival rate. Identifying the genes related to HNSCC radiotherapy resistance (HNSCC-RR) is helpful in the search for potential therapeutic targets. However, identifying radiotherapy resistance-related genes from tens of thousands of genes is a challenging task. While interactions between genes are important for elucidating complex biological processes, the large number of genes makes the computation of gene interactions infeasible. METHODS: We propose a gene selection algorithm, RGIE, which is based on ReliefF, Gene Network Inference with Ensemble of Trees (GENIE3) and Feature Elimination. ReliefF was used to select a feature subset that is discriminative for HNSCC-RR, GENIE3 constructed a gene regulatory network based on this subset to analyze the regulatory relationship among genes, and feature elimination was used to remove redundant and noisy features. RESULTS: Nine genes (SPAG1, FIGN, NUBPL, CHMP5, TCF7L2, COQ10B, BSDC1, ZFPM1, GRPEL1) were identified and used to identify HNSCC-RR, which achieved performances of 0.9730, 0.9679, 0.9767, and 0.9885 in terms of accuracy, precision, recall, and AUC, respectively. Finally, qRT-PCR validated the differential expression of the nine signature genes in cell lines (SCC9, SCC9-RR). CONCLUSION: RGIE is effective in screening genes related to HNSCC-RR. This approach may help guide clinical treatment modalities for patients and develop potential treatments.

9.
Biomed Pharmacother ; 172: 116213, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306847

RESUMEN

Melanoma is one of the most lethal cutaneous malignancies. Despite great advances in radiotherapy, chemotherapy, and immunotherapy, the survival rate and prognosis of patients with melanoma remain poor. The abundant and sophisticated reciprocal communication network between melanoma cells and non-tumor cells contributes to the high heterogeneity of the melanoma microenvironment and is intimately related to varying treatment responses and clinical courses. Extracellular vesicles (EVs) are membrane structures generated by nearly all cell types. EVs contain biologically active molecules, mainly comprising proteins, lipids, and RNAs, and undoubtedly play multifaceted roles in numerous diseases, represented by melanoma. Non-coding RNAs (ncRNAs) mainly encompass long non-coding RNAs, microRNAs, and circular RNAs and constitute the majority of the human transcriptome. Multiple ncRNAs encapsulated in EVs coordinate various pathophysiological processes in melanoma. This review summarizes the mechanisms by which EV-ncRNAs modulate biological behaviors and immunity, and their potential diagnostic and therapeutic applications in melanoma. Undoubtedly, further insight into EV-ncRNAs and their functions in melanoma will contribute to the clinical treatment of melanoma and the implementation of precision medicine.


Asunto(s)
Vesículas Extracelulares , Melanoma , MicroARNs , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , ARN no Traducido/genética , Vesículas Extracelulares/genética , MicroARNs/genética , Microambiente Tumoral/genética
10.
Cell Death Dis ; 15(2): 139, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355684

RESUMEN

Radioresistance imposes a great challenge in reducing tumor recurrence and improving the clinical prognosis of individuals having oral squamous cell carcinoma (OSCC). OSCC harbors a subpopulation of CD44(+) cells that exhibit cancer stem-like cell (CSC) characteristics are involved in malignant tumor phenotype and radioresistance. Nevertheless, the underlying molecular mechanisms in CD44( + )-OSCC remain unclear. The current investigation demonstrated that methyltransferase-like 3 (METTL3) is highly expressed in CD44(+) cells and promotes CSCs phenotype. Using RNA-sequencing analysis, we further showed that Spalt-like transcription factor 4 (SALL4) is involved in the maintenance of CSCs properties. Furthermore, the overexpression of SALL4 in CD44( + )-OSCC cells caused radioresistance in vitro and in vivo. In contrast, silencing SALL4 sensitized OSCC cells to radiation therapy (RT). Mechanistically, we illustrated that SALL4 is a direct downstream transcriptional regulation target of METTL3, the transcription activation of SALL4 promotes the nuclear transport of ß-catenin and the expression of downstream target genes after radiation therapy, there by activates the Wnt/ß-catenin pathway, effectively enhancing the CSCs phenotype and causing radioresistance. Herein, this study indicates that the METTL3/SALL4 axis promotes the CSCs phenotype and resistance to radiation in OSCC via the Wnt/ß-catenin signaling pathway, and provides a potential therapeutic target to eliminate radioresistant OSCC.


Asunto(s)
Adenina/análogos & derivados , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/radioterapia , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia/patología , Neoplasias de Cabeza y Cuello/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proliferación Celular/genética , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Transl Oncol ; 40: 101852, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042136

RESUMEN

BACKGROUND: Neurofibroma type I (NF1) often presents with multiple clinical phenotypes due to mutations of NF1 gene. The aim of this study was to determine the phenotypic and therapeutic relevance of tumor microenvironment in NF1 patients. METHODS: Tumor stem cells (TSCs) from NF1 were isolated and cultured using fluorescence activated cell sorting (FACS) and colony formation experiments. Then, flow cytometry was used to detect the surface markers, osteogenic and adipogenic differentiation were performed as well. Its tumorigenesis ability was confirmed by subcutaneous tumorigenesis in nude mice. Immunohistochemical staining was performed on neurofibroma tissues from the head and trunk with different phenotypes. The expression of BDNF in neurofibroma tissues was detected by Elisa and immunohistochemical staining. Western Blotting was used to detect the expression of p38 MAPK pathway in TSCs. The effect of BDNF neutralizing antibody on the tumorigenesis of TSCs was observed. RESULTS: Herein, we advocate that NF1 contain a new subgroup of mesenchymal-like neurofibroma stem cells (MNSCs). Such colony-forming MNSCs preserved self-renewal, multiple differentiation and tumorigenic capabilities. More interestingly, the MNSCs isolated from neurofibroma tissues of the same patient with different phenotypes presented site-specific capabilities. Moreover, different levels of brain-derived neurotrophic factor (BDNF) in neurofibroma tissues can impact the MNSCs by activating the TrkB/p38 MAPK pathway. Systemic administration of BDNF neutralizing antibodies inhibited MNSCs' characteristics. CONCLUSIONS: We demonstrated that BDNF can modulate MNSCs and thereby controlling different tumor phenotypes between the head and trunk regions. Application of BDNF neutralizing antibodies may inhibit p38 MAPK pathway, therefore providing a promising strategy for managing NF1.

12.
Chem Commun (Camb) ; 59(95): 14153-14156, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37955272

RESUMEN

A practical method that enables the fluorosulfenylation of unactivated alkenes processed directly with thiols and fluoride salts is presented. Good to excellent efficiencies and functional group tolerance are observed for both alkene substrates and thiols. The procedure also allows the use of gaseous ethylene as a two-carbon building block for ß-fluoro thioether products.

13.
Molecules ; 28(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005364

RESUMEN

Sanguinarine (SAN), as the main active component of a traditional Chinese veterinary medicine, has been widely used in the animal husbandry and breeding industry. However, the metabolites of SA are still uncertain. Therefore, this research aimed to investigate the metabolites of SA based on rats in vivo. The blood, feces, and urine of rats were collected after the oral administration of 40 mg/kg SAN. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) was employed to identify the metabolites of SAN. The elemental composition of sanguinarine metabolites was inferred by analyzing their exact molecular weight, and the structures of the metabolites were predicted based on their fragment ions and cleavage pathways. A total of 12 metabolites were identified, including three metabolites in the plasma, four in the urine, and nine in the feces. According to the possible metabolic pathways deduced in this study, SAN was mainly metabolized through reduction, oxidation, demethylation, hydroxylation, and glucuronidation. This present research has summarized the metabolism of SAN in rats, which is helpful for further studying the metabolic mechanism of SAN in vivo and in vitro.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Cromatografía Líquida de Alta Presión/métodos , Plasma/química , Medicamentos Herbarios Chinos/química , Administración Oral
14.
J Agric Food Chem ; 71(43): 16125-16136, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37857386

RESUMEN

Wheat alkylresorcinols (ARs) consumption has been evidenced to improve obesity and its associated insulin resistance. However, the effect of ARs on glucagon-like peptide 1 (GLP-1) secretion and the underlying mechanism of action are still unclear. In this study, C57BL/6J mice were fed low-fat diet (LFD), high-fat diet (HFD), and HFD supplemented with 0.4% (w/w) ARs separately for 9 weeks. The results showed that ARs intervention significantly improved glucose homeostasis and restored the serum level of GLP-1 compared with the HFD control group. Moreover, ARs treatment alleviated HFD-induced ileal epithelium damage according to TUNEL staining, immunofluorescence, and transmission electron microscopy observation. The alleviative effect was further verified by apoptosis analysis and mitochondrial function evaluation. Furthermore, palmitic acid (PA) was administered to the intestinal secretin tumor cell line (STC-1) to clarify the protective effect of ARs on GLP-1 secretion in vitro. In consistence with the results of animal studies, ARs treatment could significantly improve GLP-1 secretion in STC-1 cells compared with PA treatment alone in a dose-dependent manner, accompanied by a reduction in apoptosis and mitochondrial dysfunction. In addition, ARs treatment notably enhanced the abundance of SCFA (short-chain fatty acid)-producing bacteria, such as Bacteroides, Bifidobacterium, and Akkermansia. The increased levels of intestinal SCFAs, such as acetic acid, propionic acid, and butyric acid, improved the expression of short-chain fatty acid receptors (FFAR3) and glucagon-like peptide-1 receptor (GLP-1R), enhancing the secretion of the intestinal hormones GLP-1. Thus, this study provides potential clinical implications of whole wheat as a dietary strategy to improve glucose homeostasis for obese populations.


Asunto(s)
Dieta Alta en Grasa , Hormonas Gastrointestinales , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Péptido 1 Similar al Glucagón/metabolismo , Ratones Obesos , Triticum/metabolismo , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Ácidos Grasos Volátiles/metabolismo , Ácido Palmítico/farmacología , Glucosa/metabolismo , Homeostasis
15.
Clin. transl. oncol. (Print) ; 25(10): 3006-3020, oct. 2023. ilus
Artículo en Inglés | IBECS | ID: ibc-225081

RESUMEN

Background In the treatment of oral squamous cell carcinoma (OSCC), radiation resistance remains an important obstacle to patient outcomes. Progress in understanding the molecular mechanisms of radioresistance has been limited by research models that do not fully recapitulate the biological features of solid tumors. In this study, we aimed to develop novel in vitro models to investigate the underlying basis of radioresistance in OSCC and to identify novel biomarkers. Methods Parental OSCC cells (SCC9 and CAL27) were repeatedly exposed to ionizing radiation to develop isogenic radioresistant cell lines. We characterized the phenotypic differences between the parental and radioresistant cell lines. RNA sequencing was used to identify differentially expressed genes (DEGs), and bioinformatics analysis identified candidate molecules that may be related to OSCC radiotherapy. Results Two isogenic radioresistant cell lines for OSCC were successfully established. The radioresistant cells displayed a radioresistant phenotype when compared to the parental cells. Two hundred and sixty DEGs were co-expressed in SCC9-RR and CAL27-RR, and thirty-eight DEGs were upregulated or downregulated in both cell lines. The associations between the overall survival (OS) of OSCC patients and the identified genes were analyzed using data from the Cancer Genome Atlas (TCGA) database. A total of six candidate genes (KCNJ2, CLEC18C, P3H3, PIK3R3, SERPINE1, and TMC8) were closely associated with prognosis. Conclusion This study demonstrated the utility of constructing isogenic cell models to investigate the molecular changes associated with radioresistance. Six genes were identified based on the data from the radioresistant cells that may be potential targets in the treatment of OSCC (AU)


Asunto(s)
Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Neoplasias de la Boca/genética , Neoplasias de la Boca/radioterapia , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca/patología , Línea Celular Tumoral
16.
J Agric Food Chem ; 71(39): 14151-14163, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37748922

RESUMEN

To discover novel natural product-based fungicidal agrochemicals, 41 novel camphanic acid hydrazide and camphor sulfonamide derivatives were designed, synthesized, and tested for their antifungal profile against four plant pathogenic fungi and three oomycetes. As a result, some derivatives presented pronounced inhibitory activities toward Botryosphaeria dothidea, Fusarium graminearum, Phytophthora capsici, and Phytophthora nicotianae. Especially, compound 4b demonstrated the most potent anti-B. dothidea activity (EC50 = 1.28 mg/L), much stronger than positive control chlorthalonil. The in vivo assay showed that 4b displayed significant protective and curative effects on apple fruits infected by B. dothidea. The primary antifungal mechanism study revealed that 4b could obviously enhance the cell membrane permeability, destroy the mycelial surface morphology and the cell ultrastructure, and reduce the ergosterol and exopolysaccharide contents of B. dothidea. Further, 4b showed potent laccase inhibitory activity in vitro with an IC50 value of 11.3 µM, superior to positive control cysteine. The molecular docking study revealed that 4b could dock well into the active site of laccase by forming multiple interactions with the key residues in the pocket. The acute oral toxicity test in rats presented that 4b had slight toxicity with an LD50 value of 849.1 mg/kg bw (95% confidence limit: 403.9-1785.3 mg/kg bw). This research identified that the camphanic acid hydrazide derivatives could be promising leads for the development of novel laccase-targeting fungicides.

17.
Nutrients ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447299

RESUMEN

Oxidative stress has been identified as a major cause of cellular injury in a variety of neurodegenerative disorders. This study aimed to investigate the cytoprotective effects of piceatannol on hydrogen peroxide (H2O2)-induced pheochromocytoma-12 (PC-12) cell damage and explore the underlying mechanisms. Our findings indicated that piceatannol pre-treatment significantly attenuated H2O2-induced PC-12 cell death. Furthermore, piceatannol effectively improved mitochondrial content and mitochondrial function, including enhancing mitochondrial reactive oxygen species (ROS) elimination capacity and increasing mitochondrial transcription factor (TFAM), peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α) and mitochondria Complex IV expression. Meanwhile, piceatannol treatment inhibited mitochondria-mediated autophagy as demonstrated by restoring mitochondrial membrane potential, reducing autophagosome formation and light chain 3B II/I (LC3B II/I) and autophagy-related protein 5 (ATG5) expression level. The protein expression level of SIRT3 was significantly increased by piceatannol in a concentration-dependent manner. However, the cytoprotective effect of piceatannol was dramatically abolished by sirtuin 3 (SIRT3) inhibitor, 3-(1H-1,2,3-Triazol-4-yl) pyridine (3-TYP), which led to an exacerbated mitochondrial dysfunction and autophagy in PC-12 cells under oxidative stress. In addition, the autophagy activator (rapamycin) abrogated the protective effects of piceatannol on PC-12 cell death. These findings demonstrated that piceatannol could alleviate PC-12 cell oxidative damage and mitochondrial dysfunction by inhibiting autophagy via the SIRT3 pathway.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Feocromocitoma , Sirtuina 3 , Humanos , Sirtuina 3/genética , Sirtuina 3/metabolismo , Peróxido de Hidrógeno/metabolismo , Feocromocitoma/metabolismo , Estrés Oxidativo , Mitocondrias/metabolismo , Autofagia , Neoplasias de las Glándulas Suprarrenales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
18.
Chem Biodivers ; 20(7): e202300539, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37317940

RESUMEN

To discover novel laccase inhibitors as potential fungicides, twenty-six novel L-menthol hydrazide derivatives were designed and synthesized. In the in vitro antifungal assay, most of the target compounds displayed pronounced antifungal activity against Sclerotinia sclerotiorum, Fusarium graminearum, and Botryosphaeria dothidea. Especially, the EC50 of compounds 3 b and 3 q against B. dothidea was 0.465 and 0.622 mg/L, which was close to the positive compound fluxapyroxad (EC50 =0.322 mg/L). Scanning electron microscopy (SEM) analysis showed that compound 3 b could significantly damage the mycelial morphology of B. dothidea. In vivo antifungal experiments on apple fruits showed that 3 b exhibited excellent protective and curative effects. Furthermore, in the in vitro laccase inhibition assay, 3 b showed outstanding inhibitory activity with the IC50 value of 2.08 µM, which is much stronger than positive control cysteine and PMDD-5Y. These results indicated that this class of L-menthol derivatives could be promising leads for the discovery of laccase-targeting fungicides.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Antifúngicos/farmacología , Mentol , Lacasa , Relación Estructura-Actividad , Hidrazinas
19.
Food Funct ; 14(11): 5001-5011, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37199511

RESUMEN

The whitening and loss of brown adipose tissue (BAT) during obesity and aging are associated with a higher risk of metabolic syndrome and chronic diseases. 5-Heptadecylresorcinol (AR-C17), the specific biomarker of whole-grain wheat and rye intake, has been proved to have notable health promoting effects, whereas whether AR-C17 could modulate BAT function and the potential mechanism of action remains unclear. In this study, we found that AR-C17 could significantly inhibit body weight gain and insulin resistance in high-fat diet (HFD) induced obese mice. Moreover, AR-C17 treatment improved whole body energy metabolism and alleviated the whitening and loss of BAT compared with the HFD group. RNA sequencing and western-blot analysis indicated that expression of genes and proteins related to BAT energy metabolism was upregulated by AR-C17 administration, including AMPK, UCP-1, ACSL1, CPT1A, and SIRT3. These results suggested that brown adipose tissue might be the target of AR-C17 to prevent obesity and its associated insulin resistance.


Asunto(s)
Obesidad , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Masculino , Animales , Ratones , Resistencia a la Insulina , Adipocitos Marrones/metabolismo , Metabolismo Energético
20.
Clin Transl Oncol ; 25(10): 3006-3020, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37029240

RESUMEN

BACKGROUND: In the treatment of oral squamous cell carcinoma (OSCC), radiation resistance remains an important obstacle to patient outcomes. Progress in understanding the molecular mechanisms of radioresistance has been limited by research models that do not fully recapitulate the biological features of solid tumors. In this study, we aimed to develop novel in vitro models to investigate the underlying basis of radioresistance in OSCC and to identify novel biomarkers. METHODS: Parental OSCC cells (SCC9 and CAL27) were repeatedly exposed to ionizing radiation to develop isogenic radioresistant cell lines. We characterized the phenotypic differences between the parental and radioresistant cell lines. RNA sequencing was used to identify differentially expressed genes (DEGs), and bioinformatics analysis identified candidate molecules that may be related to OSCC radiotherapy. RESULTS: Two isogenic radioresistant cell lines for OSCC were successfully established. The radioresistant cells displayed a radioresistant phenotype when compared to the parental cells. Two hundred and sixty DEGs were co-expressed in SCC9-RR and CAL27-RR, and thirty-eight DEGs were upregulated or downregulated in both cell lines. The associations between the overall survival (OS) of OSCC patients and the identified genes were analyzed using data from the Cancer Genome Atlas (TCGA) database. A total of six candidate genes (KCNJ2, CLEC18C, P3H3, PIK3R3, SERPINE1, and TMC8) were closely associated with prognosis. CONCLUSION: This study demonstrated the utility of constructing isogenic cell models to investigate the molecular changes associated with radioresistance. Six genes were identified based on the data from the radioresistant cells that may be potential targets in the treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/radioterapia , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patología , Perfilación de la Expresión Génica , Tolerancia a Radiación/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Línea Celular Tumoral , Biomarcadores , Neoplasias de Cabeza y Cuello/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Proteínas de la Membrana/genética , Fosfatidilinositol 3-Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...