Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e26169, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545220

RESUMEN

Public opinion will significantly affect investor decision-making and stock prices, which ultimately has an impact on the long-term development of the new energy industry. This paper mainly aims to delve in the impact of public opinion on the efficacy of financial risk early warning effect and try to establish an enhanced financial risk early warning model for the new energy list companies. To achieve this, we collect the financial data and public evaluation texts of 185 new energy listed companies, converting the text into emotional indicators which are combined with financial indicators to build a financial risk early warning model for new energy listed companies. The contributions of this paper are as follows: (1) The experiment validation demonstrates that the combination of 7 deep learning models and Bagging algorithm highly improves the accuracy of the sentiment analysis model, achieving an accuracy of 84.09%. (2) The accuracy of financial early warning models is generally enhanced after adding sentiment indicators, among which the accuracy of the BP neural network model reached 95.78%. (3) Through clustering analysis, the evaluation models can productively divide the warning intervals, thereby bolstering the interpretability and applicability of early warning results. Therefore, we suggest that when establishing the financial early warning system, it's necessary to take public opinions into consideration. Aside from improving the early warning effect, it also can be used as a separate indicator for daily monitoring.

2.
Environ Pollut ; 344: 123363, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242309

RESUMEN

Experiments were conducted to investigate the alleviating effects of ZnO quantum dots (ZnO QDs) on salt stress in Salvia miltiorrhiza by comparing them with conventional ZnO nanoparticles (ZnO NPs). The results demonstrated that compared with salt stress alone, foliar application of ZnO QDs significantly improved the biomass as well as the total chlorophyll and carotenoids contents under salt stress. ZnO QDs reduced H2O2 and MDA levels, decreased non-enzymatic antioxidant (ASA and GSH) content, and improved antioxidant enzyme (POD, SOD, CAT, PAL, and PPO) activity under salt stress. Metal elemental analysis further demonstrated that the ZnO QDs markedly increased Zn and K contents while decreasing Na content, resulting in a lower Na/K ratio compared to salt stress alone. Finally, RNA sequencing results indicated that ZnO QDs primarily regulated genes associated with stress-responsive pathways, including plant hormone signal transduction, the MAPK signaling pathway, and metabolic-related pathways, thereby alleviating the adverse effects of salt stress. In comparison, ZnO NPs did not exhibit similar effects in terms of improving plant growth, enhancing the antioxidant system, or regulating stress-responsive genes under salt stress. These findings highlight the distinct advantages of ZnO QDs and suggest their potential as a valuable tool for mitigating salt stress in plants.


Asunto(s)
Salvia miltiorrhiza , Óxido de Zinc , Especies Reactivas de Oxígeno , Óxido de Zinc/toxicidad , Antioxidantes , Peróxido de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA