Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38853916

RESUMEN

Multi-step multi-hour tryptic proteolysis has limited the utility of bottom-up proteomics for cases that require immediate quantitative information. The recently available hyperthermoacidic (HTA) protease "Krakatoa" digests samples in a single 5 to 30-minute step at pH 3 and >80 °C; conditions that disrupt most cells and tissues, denature proteins, and block disulfide reformation. The combination of quick single-step sample preparation with high throughput dual trapping column single analytical column (DTSC) liquid chromatography-mass spectrometry (LC-MS) achieves "Rapid Proteomics" in which the time from sample collection to actionable data is less than 1 hour. The presented development and systematic evaluation of this methodology found reproducible quantitation of over 160 proteins from just 1 microliter of whole blood. Furthermore, the preference of the HTA-protease for intact proteins over peptides allows for sensitive targeted quantitation of the Angiotensin I and II bioactive peptides in under half an hour. With these methods we analyzed serum and plasma from 53 individuals and quantified Angiotensin and proteins that were not detected with trypsin. This assessment of Rapid Proteomics suggests that concentration of circulating protein and peptide biomarkers could be measured in almost real-time by LC-MS. TOC Figure: Rapid proteomics enables near real-time monitoring of circulating blood biomarkers. One microliter of blood is collected every 8 minutes, digested for 20 minutes, and then analyzed by targeted mass spectrometry for 8 minutes. This results in a 30-minute delay with datapoints every 8 minutes.

2.
J Proteomics ; 289: 104992, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37634627

RESUMEN

Here we introduce hyperthermoacidic archaeal proteases (HTA-Proteases©) isolated from organisms that thrive in nearly boiling acidic volcanic springs and investigate their use for bottom-up proteomic experiments. We find that HTA-Proteases have novel cleavage specificities, show no autolysis, function in dilute formic acid, and store at ambient temperature for years. HTA-Proteases function optimally at 70-90 °C and pH of 2-4 with rapid digestion kinetics. The extreme HTA-Protease reaction conditions actively denature sample proteins, obviate the use of chaotropes, are largely independent of reduction and alkylation, and allow for a one-step/five-minute sample preparation protocol without sample manipulation, dilution, or additional cleanup. We find that brief one-step HTA-Protease protocols significantly increase proteome and protein sequence coverage with datasets orthogonal to trypsin. Importantly, HTA-Protease digests markedly increase coverage and identifications for ribonucleoproteins, histones, and mitochondrial membrane proteins as compared to tryptic digests alone. In addition to increased coverage in these classes, HTA-Proteases and simplified one-step protocols are expected to reduce technical variability and advance the fields of clinical and high-throughput proteomics. This work reveals significant utility of heretofore unavailable HTA-Proteases for proteomic workflows. We discuss some of the potential for these remarkable enzymes to empower new proteomics methods, approaches, and biological insights. SIGNIFICANCE: Here we introduce new capabilities for bottom-up proteomics applications with hyperthermoacidic archaeal proteases (HTA-Proteases©). HTA-Proteases have novel cleavage specificity, require no chaotropes, and allow simple one-step/five-minute sample preparations that promise to reduce variability between samples and laboratories. HTA-Proteases generate unique sets of observable peptides that are non-overlapping with tryptic peptides and significantly increase sequence coverage and available peptide targets relative to trypsin alone. HTA-Proteases show some bias for the detection and coverage of nucleic acid-binding proteins and membrane proteins relative to trypsin. These new ultra-stable enzymes function optimally in nearly boiling acidic conditions, show no autolysis, and do not require aliquoting as they are stable for years at ambient temperatures. Used independently or in conjunction with tryptic digests, HTA-Proteases offer increased proteome coverage, unique peptide targets, and brief one-step protocols amenable to automation, rapid turnaround, and high-throughput approaches.


Asunto(s)
Péptido Hidrolasas , Proteoma , Péptido Hidrolasas/metabolismo , Tripsina/química , Proteoma/metabolismo , Proteómica/métodos , Flujo de Trabajo , Péptidos/química , Proteínas de la Membrana/metabolismo
3.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37218716

RESUMEN

AIMS: To test the efficacy of novel hot/acid hyperthermoacidic enzyme treatments on the removal of thermophilic spore-forming biofilms from stainless steel surfaces. METHODS AND RESULTS: The present study measured the efficacy of hyperthermoacidic enzymes (protease, amylase, and endoglucanase) that are optimally active at low pH (≈3.0) and high temperatures (≈80°C) at removing thermophilic bacilli biofilms from stainless steel (SS) surfaces. Plate counts, spore counts, impedance microbiology, as well as epifluorescence microscopy, and scanning electron microscopy (SEM) were used to evaluate the cleaning and sanitation of biofilms grown in a continuous flow biofilm reactor. Previously unavailable hyperthermoacidic amylase, protease, and the combination of amylase and protease were tested on Anoxybacillus flavithermus and Bacillus licheniformis, and endoglucanase was tested on Geobacillus stearothermophilus. In all cases, the heated acidic enzymatic treatments significantly reduced biofilm cells and their sheltering extracellular polymeric substances (EPS). CONCLUSIONS: Hyperthermoacidic enzymes and the associated heated acid conditions are effective at removing biofilms of thermophilic bacteria from SS surfaces that contaminate dairy plants.


Asunto(s)
Celulasa , Acero Inoxidable , Animales , Leche/microbiología , Archaea , Biopelículas , Péptido Hidrolasas
4.
JCI Insight ; 52019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31184599

RESUMEN

Cellular senescence is a tumor suppressive mechanism that can paradoxically contribute to aging pathologies. Despite evidence of immune clearance in mouse models, it is not known how senescent cells (SnCs) persist and accumulate with age or in tumors in individuals. Here, we identify cooperative mechanisms that orchestrate the immunoevasion and persistence of normal and cancer human SnCs through extracellular targeting of natural killer receptor signaling. Damaged SnCs avoid immune recognition through MMPs-dependent shedding of NKG2D-ligands reinforced via paracrine suppression of NKG2D receptor-mediated immunosurveillance. These coordinated immunoediting processes are evident in residual, drug-resistant tumors from cohorts of >700 prostate and breast cancer patients treated with senescence-inducing genotoxic chemotherapies. Unlike in mice, these reversible senescence-subversion mechanisms are independent of p53/p16 and exacerbated in oncogenic RAS-induced senescence. Critically, the p16INK4A tumor suppressor can disengage the senescence growth arrest from the damage-associated immune senescence program, which is manifest in benign nevi lesions where indolent SnCs accumulate over time and preserve a non-pro-inflammatory tissue microenvironment maintaining NKG2D-mediated immunosurveillance. Our study shows how subpopulations of SnCs elude immunosurveillance, and reveals secretome-targeted therapeutic strategies to selectively eliminate -and restore the clearance of- the detrimental SnCs that actively persist after chemotherapy and accumulate at sites of aging pathologies.


Asunto(s)
Envejecimiento/inmunología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Senescencia Celular/inmunología , Resistencia a Antineoplásicos/inmunología , Neoplasias de la Próstata/tratamiento farmacológico , Escape del Tumor/inmunología , Envejecimiento/patología , Animales , Antineoplásicos/uso terapéutico , Biopsia , Mama/patología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Vigilancia Inmunológica/efectos de los fármacos , Vigilancia Inmunológica/inmunología , Masculino , Metaloendopeptidasas/metabolismo , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK/antagonistas & inhibidores , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Próstata/patología , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Análisis de Matrices Tisulares , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
5.
Biochemistry ; 57(48): 6688-6700, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30376300

RESUMEN

Protein engineering to alter recognition underlying ligand binding and activity has enormous potential. Here, ligand binding for Escherichia coli phosphoenolpyruvate carboxykinase (PEPCK), which converts oxaloacetate into CO2 and phosphoenolpyruvate as the first committed step in gluconeogenesis, was engineered to accommodate alternative ligands as an exemplary system with structural information. From our identification of bicarbonate binding in the PEPCK active site at the supposed CO2 binding site, we probed binding of nonnative ligands with three oxygen atoms arranged to resemble the bicarbonate geometry. Crystal structures of PEPCK and point mutants with bound nonnative ligands thiosulfate and methanesulfonate along with strained ATP and reoriented oxaloacetate intermediates and unexpected bicarbonate were determined and analyzed. The mutations successfully altered the bound ligand position and orientation and its specificity: mutated PEPCKs bound either thiosulfate or methanesulfonate but never both. Computational calculations predicted a methanesulfonate binding mutant and revealed that release of the active site ordered solvent exerts a strong influence on ligand binding. Besides nonnative ligand binding, one mutant altered the Mn2+ coordination sphere: instead of the canonical octahedral ligand arrangement, the mutant in question had an only five-coordinate arrangement. From this work, critical features of ligand binding, position, and metal ion cofactor geometry required for all downstream events can be engineered with small numbers of mutations to provide insights into fundamental underpinnings of protein-ligand recognition. Through structural and computational knowledge, the combination of designed and random mutations aids in the robust design of predetermined changes to ligand binding and activity to engineer protein function.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/química , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Sustitución de Aminoácidos , Dominio Catalítico/genética , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Enlace de Hidrógeno , Cinética , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Conformación Proteica , Ingeniería de Proteínas , Electricidad Estática , Especificidad por Sustrato
6.
DNA Repair (Amst) ; 41: 16-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27049455

RESUMEN

DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Timina/análogos & derivados , Células HCT116 , Humanos , Timina/metabolismo
7.
Oncotarget ; 7(1): 46-65, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26695548

RESUMEN

Faithful and complete genome replication in human cells is essential for preventing the accumulation of cancer-promoting mutations. WRN, the protein defective in Werner syndrome, plays critical roles in preventing replication stress, chromosome instability, and tumorigenesis. Herein, we report that ATR-mediated WRN phosphorylation is needed for DNA replication and repair upon replication stress. A serine residue, S1141, in WRN is phosphorylated in vivo by the ATR kinase in response to replication stress. ATR-mediated WRN S1141 phosphorylation leads to ubiquitination of WRN, facilitating the reversible interaction of WRN with perturbed replication forks and subsequent degradation of WRN. The dynamic interaction between WRN and DNA is required for the suppression of new origin firing and Rad51-dependent double-stranded DNA break repair. Significantly, ATR-mediated WRN phosphorylation is critical for the suppression of chromosome breakage during replication stress. These findings reveal a unique role for WRN as a modulator of DNA repair, replication, and recombination, and link ATR-WRN signaling to the maintenance of genome stability.


Asunto(s)
Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , RecQ Helicasas/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Daño del ADN , Reparación del ADN , Exodesoxirribonucleasas/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Microscopía Confocal , Fosforilación , RecQ Helicasas/genética , Serina/genética , Serina/metabolismo , Helicasa del Síndrome de Werner
8.
Stand Genomic Sci ; 10: 74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26445627

RESUMEN

Thermoanaerobacter thermohydrosulfuricus BSB-33 is a thermophilic gram positive obligate anaerobe isolated from a hot spring in West Bengal, India. Unlike other T. thermohydrosulfuricus strains, BSB-33 is able to anaerobically reduce Fe(III) and Cr(VI) optimally at 60 °C. BSB-33 is the first Cr(VI) reducing T. thermohydrosulfuricus genome sequenced and of particular interest for bioremediation of environmental chromium contaminations. Here we discuss features of T. thermohydrosulfuricus BSB-33 and the unique genetic elements that may account for the peculiar metal reducing properties of this organism. The T. thermohydrosulfuricus BSB-33 genome comprises 2597606 bp encoding 2581 protein genes, 12 rRNA, 193 pseudogenes and has a G + C content of 34.20 %. Putative chromate reductases were identified by comparative analyses with other Thermoanaerobacter and chromate-reducing bacteria.

9.
Cell Rep ; 9(4): 1387-401, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25456133

RESUMEN

WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRN to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.


Asunto(s)
Replicación del ADN , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , RecQ Helicasas/metabolismo , Estrés Fisiológico , Animales , Células CHO , Camptotecina/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cricetinae , Cricetulus , Roturas del ADN de Doble Cadena/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/química , Inestabilidad Genómica/efectos de los fármacos , Humanos , Proteína Homóloga de MRE11 , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Transporte de Proteínas/efectos de los fármacos , Recombinasa Rad51/metabolismo , RecQ Helicasas/química , Proteína de Replicación A/metabolismo , Estrés Fisiológico/efectos de los fármacos , Relación Estructura-Actividad , Helicasa del Síndrome de Werner
10.
Nucleic Acids Res ; 41(22): 10157-69, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24021630

RESUMEN

Exposure to genotoxic agents, such as ionizing radiation (IR), produces double-strand breaks, repaired predominantly in mammalian cells by non-homologous end-joining (NHEJ). Ku70 was identified as an interacting partner of a proteolytic Cyclin E (CycE) fragment, p18CycE. p18CycE endogenous generation during IR-induced apoptosis in leukemic cells and its stable expression in epithelial tumor cells sensitized to IR. γH2AX IR-induced foci (IRIFs) and comet assays indicated ineffective NHEJ DNA repair in p18CycE-expressing cells. DNA pull-down and chromatin recruitment assays revealed that retention of NHEJ factors to double-strand breaks, but not recruitment, was diminished. Similarly, IRIFs of phosphorylated T2609 and S2056-DNA-PKcs and its target S1778-53BP1 were greatly decreased in p18CycE-expressing cells. As a result, DNA-PKcs chromatin association was also increased. 53BP1 IRIFs were suppressed when p18CycE was generated in leukemic cells and in epithelial cells stably expressing p18CycE. Ataxia telangiectasia mutated was activated but not its 53BP1 and MDC1 targets. These data indicate a profound influence of p18CycE on NHEJ through its interference with DNA-PKcs conformation and/or dimerization, which is required for effective DNA repair, making the p18CycE-expressing cells more IR sensitive. These studies provide unique mechanistic insights into NHEJ misregulation in human tumor cells, in which defects in NHEJ core components are rare.


Asunto(s)
Cromatina/metabolismo , Ciclina E/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Daño del ADN , Proteína Quinasa Activada por ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Radiación Ionizante , Transactivadores/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
11.
DNA Repair (Amst) ; 12(6): 422-32, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23602515

RESUMEN

Both Metnase and Artemis possess endonuclease activities that trim 3' overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3' overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4-5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3'-phosphoglycolates (PGs), and in some cases the presence of 3'-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3' overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3'-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Nucleares/metabolismo , Reparación del ADN por Recombinación , Aductos de ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Glicolatos/metabolismo , Células HEK293 , Células HeLa , Humanos , Timina/análogos & derivados , Timina/metabolismo
12.
Nat Protoc ; 8(3): 451-60, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23391889

RESUMEN

Untargeted metabolomics provides a comprehensive platform for identifying metabolites whose levels are altered between two or more populations. By using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), hundreds to thousands of peaks with a unique m/z ratio and retention time are routinely detected from most biological samples in an untargeted profiling experiment. Each peak, termed a metabolomic feature, can be characterized on the basis of its accurate mass, retention time and tandem mass spectral fragmentation pattern. Here a seven-step protocol is suggested for such a characterization by using the METLIN metabolite database. The protocol starts from untargeted metabolomic LC-Q-TOF-MS data that have been analyzed with the bioinformatics program XCMS, and it describes a strategy for selecting interesting features as well as performing subsequent targeted tandem MS. The seven steps described will require 2-4 h to complete per feature, depending on the compound.


Asunto(s)
Bases de Datos Factuales , Metabolómica/métodos , Cromatografía Liquida/métodos , Biología Computacional , Espectrometría de Masas/métodos , Programas Informáticos
13.
Nucleic Acids Res ; 41(5): 2894-906, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23325849

RESUMEN

Rapid phosphorylation of histone variant H2AX proximal to DNA breaks is an initiating event and a hallmark of eukaryotic DNA damage responses. Three mammalian kinases are known to phosphorylate H2AX in response to DNA damage. However, the mechanism(s) for damage-localized phosphorylation remains incompletely understood. The DNA-dependent protein kinase (DNA-PK) is the most abundant H2AX-modifying kinases and uniquely activated by binding DNA termini. Here, we have developed a novel approach to examine enzyme activity and substrate properties by executing biochemical assays on intact cellular structures. We apply this approach to examine the mechanisms of localized protein modification in chromatin within fixed cells. DNA-PK retains substrate specificity and independently generates break-localized γH2AX foci in chromatin. In situ DNA-PK activity recapitulates localization and intensity of in vivo H2AX phosphorylation and requires no active cellular processes. Nuclease treatments or addition of exogenous DNA resulted in genome-wide H2AX phosphorylation, showing that DNA termini dictated the locality of H2AX phosphorylation in situ. DNA-PK also reconstituted focal phosphorylation of structural maintenance of chromatin protein 1, but not activating transcription factor 2. Allosteric regulation of DNA-PK by DNA termini protruding from chromatin constitutes an autonomous mechanism for break-localized protein phosphorylation that generates sub-nuclear foci. We discuss generalized implications of this mechanism in localizing mammalian DNA damage responses.


Asunto(s)
Cromatina/metabolismo , Daño del ADN , Proteína Quinasa Activada por ADN/metabolismo , Procesamiento Proteico-Postraduccional , Factor de Transcripción Activador 2/metabolismo , Regulación Alostérica , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteína Quinasa Activada por ADN/fisiología , Activación Enzimática , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microscopía Fluorescente , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Especificidad por Sustrato , Proteína 1 de Unión al Supresor Tumoral P53
14.
Radiat Oncol ; 7: 96, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22713703

RESUMEN

BACKGROUND: Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation. RESULTS: Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage. CONCLUSIONS: These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies.


Asunto(s)
Ciclo Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN , Transferencia Lineal de Energía , Proteínas Nucleares/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Citometría de Flujo , Células HEK293 , Humanos , Cinética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Tiempo , Proteínas Supresoras de Tumor/metabolismo
15.
J Struct Biol ; 180(1): 249-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22584152

RESUMEN

Chemical biotinylation of protein complexes followed by binding to two-dimensional (monolayer) crystals of streptavidin is shown to be an effective way to prepare cryo-EM specimens from samples at low protein concentration. Three different multiprotein complexes are used to demonstrate the generality of this method. In addition, native thermosomes, purified from Sulfolobus solfataricus P2, are used to demonstrate that a uniform distribution of Euler angles is produced, even though this particle is known to adopt a preferred orientation when other methods of cryo-EM specimen preparation are used.


Asunto(s)
Biotina/química , Microscopía por Crioelectrón/métodos , Estreptavidina/química , Adsorción , Animales , Apoferritinas/química , Apoferritinas/ultraestructura , Proteínas Bacterianas/química , Biotinilación , Cristalización , Desulfovibrio vulgaris , Caballos , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Unión Proteica , Estructura Cuaternaria de Proteína , Sulfolobus solfataricus , Termosomas/química , Termosomas/ultraestructura
16.
Curr Opin Biotechnol ; 23(1): 89-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22138493

RESUMEN

The vital nature of metal uptake and balance in biology is evident in the highly evolved strategies to facilitate metal homeostasis in all three domains of life. Several decades of study on metals and metalloproteins have revealed numerous essential bio-metal functions. Recent advances in mass spectrometry, X-ray scattering/absorption, and proteomics have exposed a much broader usage of metals in biology than expected. Even elements such as uranium, arsenic, and lead are implicated in biological processes as part of an emerging and expansive view of bio-metals. Here we discuss opportunities and challenges for established and newer approaches to study metalloproteins with a focus on technologies that promise to rapidly expand our knowledge of metalloproteins and metal functions in biology.


Asunto(s)
Metaloproteínas/análisis , Metales/metabolismo , Proteoma/análisis , Archaea/química , Bacterias/química , Ecosistema , Humanos , Espectrometría de Masas/métodos , Metaloproteínas/química , Metales/química , Modelos Moleculares
17.
Genome Res ; 21(11): 1892-904, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21750103

RESUMEN

Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r=-0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures.


Asunto(s)
Evolución Molecular , Genoma Arqueal , Transcriptoma , Adenosina Trifosfatasas/genética , Archaea/clasificación , Archaea/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica Arqueal , Genes Arqueales , Operón , Filogenia , Regiones Promotoras Genéticas , Biosíntesis de Proteínas/genética , Transporte de ARN , Transcripción Genética , Activación Transcripcional
18.
Cell Cycle ; 10(12): 1998-2007, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21558802

RESUMEN

XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Factores de Transcripción/metabolismo , Síndrome de Werner/enzimología , Sitios de Unión , ADN Helicasas , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Endonucleasas/fisiología , Exodesoxirribonucleasas/fisiología , Humanos , Proteínas Nucleares/fisiología , Unión Proteica , RecQ Helicasas/fisiología , Fase S , Factores de Transcripción/fisiología , Helicasa del Síndrome de Werner , Xerodermia Pigmentosa
19.
Nucleic Acids Res ; 39(15): 6500-10, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21531702

RESUMEN

Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Endodesoxirribonucleasas/genética , Proteínas Nucleares/genética , Tolerancia a Radiación , Bleomicina/toxicidad , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Proteínas de Unión al ADN , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/metabolismo , Endonucleasas , Fase G1 , Humanos , Mutación , Proteínas Nucleares/análisis , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Factores de Transcripción/análisis , Proteínas Supresoras de Tumor/análisis , Cinostatina/toxicidad
20.
Anal Chem ; 82(21): 9034-42, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20945921

RESUMEN

Metabolite profiling using mass spectrometry provides an attractive approach for the interrogation of cellular metabolic capabilities. Untargeted metabolite profiling has the potential to identify numerous novel metabolites; however, de novo identification of metabolites from spectral features remains a challenge. Here we present an integrated workflow for metabolite identification using uniform stable isotope labeling. Metabolite profiling of cell and growth media extracts of unlabeled control, (15)N, and (13)C-labeled cultures of the cyanobacterium, Synechococcus sp. PCC 7002 was performed using normal phase liquid chromatography coupled to mass spectrometry (LC-MS). Visualization of three-way comparisons of raw data sets highlighted characteristic labeling patterns for metabolites of biological origin allowing exhaustive identification of corresponding spectral features. Additionally, unambiguous assignment of chemical formulas was greatly facilitated by the use of stable isotope labeling. Chemical formulas of metabolites responsible for redundant spectral features were determined and fragmentation (MS/MS) spectra for these metabolites were collected. Analysis of acquired MS/MS spectra against spectral database records led to the identification of a number of metabolites absent not only from the reconstructed draft metabolic network of Synechococcus sp. PCC 7002 but not included in databases of metabolism (MetaCyc or KEGG).


Asunto(s)
Metabolómica/métodos , Synechococcus/metabolismo , Cromatografía Liquida/métodos , Marcaje Isotópico/métodos , Redes y Vías Metabólicas , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...