Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37389657

RESUMEN

Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.


Asunto(s)
Proteínas de Drosophila , Complejo de la Endopetidasa Proteasomal , Sinapsis , Animales , Drosophila , Unión Neuromuscular , Complejo de la Endopetidasa Proteasomal/genética , Sinapsis/fisiología , Proteínas de Drosophila/genética
2.
J Neurosci ; 40(14): 2817-2827, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122953

RESUMEN

Perturbations to postsynaptic glutamate receptors (GluRs) trigger retrograde signaling to precisely increase presynaptic neurotransmitter release, maintaining stable levels of synaptic strength, a process referred to as homeostatic regulation. However, the structural change of homeostatic regulation remains poorly defined. At wild-type Drosophila neuromuscular junction synapse, there is one Bruchpilot (Brp) ring detected by superresolution microscopy at active zones (AZs). In the present study, we report multiple Brp rings (i.e., multiple T-bars seen by electron microscopy) at AZs of both male and female larvae when GluRs are reduced. At GluRIIC-deficient neuromuscular junctions, quantal size was reduced but quantal content was increased, indicative of homeostatic presynaptic potentiation. Consistently, multiple Brp rings at AZs were observed in the two classic synaptic homeostasis models (i.e., GluRIIA mutant and pharmacological blockade of GluRIIA activity). Furthermore, postsynaptic overexpression of the cell adhesion protein Neuroligin 1 partially rescued multiple Brp rings phenotype. Our study thus supports that the formation of multiple Brp rings at AZs might be a structural basis for synaptic homeostasis.SIGNIFICANCE STATEMENT Synaptic homeostasis is a conserved fundamental mechanism to maintain efficient neurotransmission of neural networks. Active zones (AZs) are characterized by an electron-dense cytomatrix, which is largely composed of Bruchpilot (Brp) at the Drosophila neuromuscular junction synapses. It is not clear how the structure of AZs changes during homeostatic regulation. To address this question, we examined the structure of AZs by superresolution microscopy and electron microscopy during homeostatic regulation. Our results reveal multiple Brp rings at AZs of glutamate receptor-deficient neuromuscular junction synapses compared with single Brp ring at AZs in wild type (WT). We further show that Neuroligin 1-mediated retrograde signaling regulates multiple Brp ring formation at glutamate receptor-deficient synapses. This study thus reveals a regulatory mechanism for synaptic homeostasis.


Asunto(s)
Homeostasis/fisiología , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Receptores de Glutamato/metabolismo
3.
J Genet Genomics ; 46(1): 5-17, 2019 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-30594466

RESUMEN

Mutations in long-chain acyl-CoA synthetase 4 (ACSL4) are associated with non-syndromic X-linked intellectual disability (ID). However, the neural functions of ACSL4 and how loss of ACSL4 leads to ID remain largely unexplored. We report here that mutations in Acsl, the Drosophila ortholog of human ACSL3 and ACSL4, result in developmental defects of the mushroom body (MB), the center of olfactory learning and memory. Specifically, Acsl mutants show fewer MB neuroblasts (Nbs) due to reduced proliferation activity and premature differentiation. Consistently, these surviving Nbs show reduced expression of cyclin E, a key regulator of the G1- to S-phase cell cycle transition, and nuclear mislocalization of the transcriptional factor Prospero, which is known to repress self-renewal genes and activate differentiating genes. Furthermore, RNA-seq analysis reveals downregulated Nb- and cell-cycle-related genes and upregulated neuronal differentiation genes in Acsl mutant Nbs. As Drosophila Acsl and human ACSL4 are functionally conserved, our findings provide novel insights into a critical and previously unappreciated role of Acsl in neurogenesis and the pathogenesis of ACSL4-related ID.


Asunto(s)
Coenzima A Ligasas/genética , Drosophila melanogaster/genética , Discapacidad Intelectual/genética , Mutación , Neuronas/citología , Homología de Secuencia de Ácido Nucleico , Transporte Activo de Núcleo Celular , Animales , Diferenciación Celular , Núcleo Celular/metabolismo , Proliferación Celular/genética , Ciclina E/metabolismo , Regulación de la Expresión Génica , Humanos , Transcripción Genética
4.
PLoS Genet ; 12(5): e1006062, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27232889

RESUMEN

Altered expression of the E3 ubiquitin ligase UBE3A, which is involved in protein degradation through the proteasome-mediated pathway, is associated with neurodevelopmental and behavioral defects observed in Angelman syndrome (AS) and autism. However, little is known about the neuronal function of UBE3A and the pathogenesis of UBE3A-associated disorders. To understand the in vivo function of UBE3A in the nervous system, we generated multiple mutations of ube3a, the Drosophila ortholog of UBE3A. We found a significantly increased number of total boutons and satellite boutons in conjunction with compromised endocytosis in the neuromuscular junctions (NMJs) of ube3a mutants compared to the wild type. Genetic and biochemical analysis showed upregulation of bone morphogenetic protein (BMP) signaling in the nervous system of ube3a mutants. An immunochemical study revealed a specific increase in the protein level of Thickveins (Tkv), a type I BMP receptor, but not other BMP receptors Wishful thinking (Wit) and Saxophone (Sax), in ube3a mutants. Ube3a was associated with and specifically ubiquitinated lysine 227 within the cytoplasmic tail of Tkv, and promoted its proteasomal degradation in Schneider 2 cells. Negative regulation of Tkv by Ube3a was conserved in mammalian cells. These results reveal a critical role for Ube3a in regulating NMJ synapse development by repressing BMP signaling. This study sheds new light onto the neuronal functions of UBE3A and provides novel perspectives for understanding the pathogenesis of UBE3A-associated disorders.


Asunto(s)
Síndrome de Angelman/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Receptores de Superficie Celular/biosíntesis , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/patología , Animales , Proteínas Morfogenéticas Óseas/biosíntesis , Proteínas Morfogenéticas Óseas/genética , Modelos Animales de Enfermedad , Drosophila/genética , Endocitosis/genética , Regulación de la Expresión Génica/genética , Humanos , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Sinapsis/genética , Ubiquitina-Proteína Ligasas/biosíntesis
5.
PLoS Genet ; 11(3): e1004984, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25748449

RESUMEN

Synaptic connections must be precisely controlled to ensure proper neural circuit formation. In Drosophila melanogaster, bone morphogenetic protein (BMP) promotes growth of the neuromuscular junction (NMJ) by binding and activating the BMP ligand receptors wishful thinking (Wit) and thickveins (Tkv) expressed in motor neurons. We report here that an evolutionally conserved, previously uncharacterized member of the S6 kinase (S6K) family S6K like (S6KL) acts as a negative regulator of BMP signaling. S6KL null mutants were viable and fertile but exhibited more satellite boutons, fewer and larger synaptic vesicles, larger spontaneous miniature excitatory junctional potential (mEJP) amplitudes, and reduced synaptic endocytosis at the NMJ terminals. Reducing the gene dose by half of tkv in S6KL mutant background reversed the NMJ overgrowth phenotype. The NMJ phenotypes of S6KL mutants were accompanied by an elevated level of Tkv protein and phosphorylated Mad, an effector of the BMP signaling pathway, in the nervous system. In addition, Tkv physically interacted with S6KL in cultured S2 cells. Furthermore, knockdown of S6KL enhanced Tkv expression, while S6KL overexpression downregulated Tkv in cultured S2 cells. This latter effect was blocked by the proteasome inhibitor MG132. Our results together demonstrate for the first time that S6KL regulates synaptic development and function by facilitating proteasomal degradation of the BMP receptor Tkv.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas/biosíntesis , Proteínas de Drosophila/genética , Unión Neuromuscular/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Animales , Animales Modificados Genéticamente , Receptores de Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Endocitosis/genética , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Plasticidad Neuronal/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Receptores de Superficie Celular/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Transducción de Señal/genética , Transmisión Sináptica/genética
6.
Nucleic Acids Res ; 42(9): 5765-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24728990

RESUMEN

Post-translational modifications (such as ubiquitination) of clock proteins are critical in maintaining the precision and robustness of the evolutionarily conserved circadian clock. Ubiquitination of the core clock transcription factor BMAL1 (brain and muscle Arnt-like 1) has recently been reported. However, it remains unknown whether BMAL1 ubiquitination affects circadian pacemaking and what ubiquitin ligase(s) is involved. Here, we show that activating UBE3A (by expressing viral oncogenes E6/E7) disrupts circadian oscillations in mouse embryonic fibroblasts, measured using PER2::Luc dynamics, and rhythms in endogenous messenger ribonucleic acid and protein levels of BMAL1. Over-expression of E6/E7 reduced the level of BMAL1, increasing its ubiquitination and proteasomal degradation. UBE3A could bind to and degrade BMAL1 in a ubiquitin ligase-dependent manner. This occurred both in the presence and absence of E6/E7. We provide in vitro (knockdown/over-expression in mammalian cells) and in vivo (genetic manipulation in Drosophila) evidence for an endogenous role of UBE3A in regulating circadian dynamics and rhythmic locomotor behaviour. Together, our data reveal an essential and conserved role of UBE3A in the regulation of the circadian system in mammals and flies and identify a novel mechanistic link between oncogene E6/E7-mediated cell transformation and circadian (BMAL1) disruption.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación , Animales , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Expresión Génica , Regulación de la Expresión Génica , Ratones , Células 3T3 NIH , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
7.
Hum Mol Genet ; 20(1): 51-63, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20935173

RESUMEN

Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the fragile X mental retardation protein FMRP. The RNA-binding FMRP represses translation of the microtubule (MT)-associated protein 1B (MAP1B) during synaptogenesis in the brain of the neonatal mouse. However, the effect of FMRP on MTs remains unclear. Mounting evidence shows that the structure and the function of FMRP are well conserved across species from Drosophila to human. From a genetic screen, we identified spastin as a dominant suppressor of rough eye caused by dfmr1 over-expression. spastin encodes an MT-severing protein, and its mutations cause neurodegenerative hereditary spastic paraplegia. Epistatic and biochemical analyses revealed that dfmr1 acts upstream of or in parallel with spastin in multiple processes, including synapse development, locomotive behaviour and MT network formation. Immunostaining showed that both loss- and gain-of-function mutations of dfmr1 result in an apparently altered MT network. Western analysis revealed that the levels of α-tubulin and acetylated MTs remained normal in dfmr1 mutants, but increased significantly when dfmr1 was over-expressed. To examine the consequence of the aberrant MTs in dfmr1 mutants, we analysed the MT-dependent mitochondrial transport and found that the number of mitochondria and the flux of mitochondrial transport are negatively regulated by dfmr1. These results demonstrate that dFMRP plays a crucial role in controlling MT formation and mitochondrial transport. Thus, defective MTs and abnormal mitochondrial transport might account for, at least partially, the pathogenesis of fragile X mental retardation.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Mitocondrias/fisiología , Animales , Transporte Axonal/genética , Transporte Axonal/fisiología , Drosophila melanogaster/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/fisiología , Mitocondrias/genética
8.
J Neurosci ; 28(12): 3221-6, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-18354025

RESUMEN

Fragile X syndrome is the most common form of heritable mental retardation caused by the loss of function of the fragile X mental retardation protein FMRP. FMRP is a multidomain, RNA-binding protein involved in RNA transport and/or translational regulation. However, the binding specificity between FMRP and its various partners including interacting proteins and mRNA targets is essentially unknown. Previous work demonstrated that dFMRP, the Drosophila homolog of human FMRP, is structurally and functionally conserved with its mammalian counterparts. Here, we perform a forward genetic screen and isolate 26 missense mutations at 13 amino acid residues in the dFMRP coding dfmr1. Interestingly, all missense mutations identified affect highly conserved residues in the N terminal of dFMRP. Loss- and gain-of-function analyses reveal altered axonal and synaptic elaborations in mutants. Yeast two-hybrid assays and in vivo analyses of interaction with CYFIP (cytoplasmic FMR1 interacting protein) in the nervous system demonstrate that some of the mutations disrupt specific protein-protein interactions. Thus, our mutational analyses establish that the N terminus of FMRP is critical for its neuronal function.


Asunto(s)
Análisis Mutacional de ADN/métodos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Mutación/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Sistema Nervioso Central/metabolismo , Secuencia Conservada , Drosophila , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Nervios Periféricos/citología , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...