Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1424212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165916

RESUMEN

Introduction: Goose astrovirus (GAstV) is a newly emerging pathogen that is currently widespread among geese, causing visceral gout and leading to substantial gosling mortalities, posing a severe threat to the waterfowl industry. GAstV II is the predominant epidemic strain, characterized by its high morbidity and mortality rate. Consequently, there is an urgent necessity to develop an effective diagnostic approach to control the dissemination of GAstV II, particularly in clinical farms with limited laboratory resources. Methods: In this study, a novel multi-enzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) combined assay was developed. Different primers designed specific targeting a highly conserved region within the viral RdRp gene for the detection of GAstV II. Primers optimized and MIRA-LFD assay analyzed its performance regarding limits of detection, specificity, and efficiency of detection. Results: The developed MIRA amplification is conducted at a constant temperature and accomplished within 10 minutes. Subsequent naked-eye observation of the LFD strips merely takes 5 minutes. The established MIRA-LFD method exhibits high specificity, with no cross-reaction with other pathogens and attains a detection sensitivity of 1 copy/µl, which is consistent with the reverse transcription quantitative PCR (RT-qPCR) assay. Further evaluation with clinical samples indicates that the accuracy of this MIRA-LFD method correlates well with RT-qPCR for the detection of GAstV II. Conclusion: In summary, the convenience, sensitivity, and rapidity of this newly developed detection method offer a significant advantage for on-site diagnosis of GAstV II.


Asunto(s)
Infecciones por Astroviridae , Gansos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Aves de Corral , Sensibilidad y Especificidad , Animales , Infecciones por Astroviridae/diagnóstico , Infecciones por Astroviridae/veterinaria , Infecciones por Astroviridae/virología , Gansos/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/virología , Avastrovirus/genética , Avastrovirus/aislamiento & purificación , Cartilla de ADN/genética , ARN Viral/genética
2.
Antibiotics (Basel) ; 13(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39200025

RESUMEN

Cell-penetrating peptides (CPPs) are promising carriers to effectively transport antisense oligonucleotides (ASOs), including peptide nucleic acids (PNAs), into bacterial cells to combat multidrug-resistant bacterial infections, demonstrating significant therapeutic potential. Streptococcus suis, a Gram-positive bacterium, is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. In this study, through the combination of super-resolution structured illumination microscopy (SR-SIM), flow cytometry analysis, and toxicity analysis assays, we investigated the suitability of four CPPs for delivering PNAs into S. suis cells: HIV-1 TAT efficiently penetrated S. suis cells with low toxicity against S. suis; (RXR)4XB had high penetration efficiency with inherent toxicity against S. suis; (KFF)3K showed lower penetration efficiency than HIV-1 TAT and (RXR)4XB; K8 failed to penetrate S. suis cells. HIV-1 TAT-conjugated PNA specific for the essential gyrase A subunit gene (TAT-anti-gyrA PNA) effectively inhibited the growth of S. suis. TAT-anti-gyrA PNA exhibited a significant bactericidal effect on serotypes 2, 4, 5, 7, and 9 strains of S. suis, which are known to cause human infections. Our study demonstrates the potential of CPP-ASO conjugates as new antimicrobial compounds for combating S. suis infections. Furthermore, our findings demonstrate that applying SR-SIM and flow cytometry analysis provides a convenient, intuitive, and cost-effective approach to identifying suitable CPPs for delivering cargo molecules into bacterial cells.

3.
BMC Vet Res ; 20(1): 337, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080654

RESUMEN

Streptococcus suis (S. suis) is an important gram-positive pathogen and an emerging zoonotic pathogen that causes meningitis in swine and humans. Although several virulence factors have been characterized in S. suis, the underlying mechanisms of pathogenesis are not fully understood. In this study, we identified Zinc metalloproteinase C (ZmpC) probably as a critical virulence factor widely distributed in S. suis strains. ZmpC was identified as a critical facilitator in the development of bacterial meningitis, as evidenced by the detection of increased expression of TNF-α, IL-8, and matrix metalloprotease 9 (MMP-9). Subcellular localization analysis further revealed that ZmpC was localized to the cell wall surface and gelatin zymography analysis showed that ZmpC could cleave human MMP-9. Mice challenge demonstrated that ZmpC provided protection against S. suis CZ130302 (serotype Chz) and ZY05719 (serotype 2) infection. In conclusion, these results reveal that ZmpC plays an important role in promoting CZ130302 to cause mouse meningitis and may be a potential candidate for a S. suis CZ130302 vaccine.


Asunto(s)
Meningitis Bacterianas , Serogrupo , Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Streptococcus suis/patogenicidad , Streptococcus suis/enzimología , Animales , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Porcinos , Enfermedades de los Porcinos/microbiología , Ratones , Meningitis Bacterianas/veterinaria , Meningitis Bacterianas/microbiología , Femenino , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos BALB C , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/genética
4.
J Basic Microbiol ; : e2400030, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031597

RESUMEN

Streptococcus suis is an important zoonotic pathogen, causing cytokine storms of Streptococcal toxic shock-like syndrome amongst humans after a wound infection into the bloodstream. To overcome the challenges of fever and leukocyte recruitment, invasive S. suis must deploy multiple stress responses forming a network and utilize proteases to degrade short-lived regulatory and misfolded proteins induced by adverse stresses, thereby adapting and evading host immune responses. In this study, we found that S. suis encodes multiple ATP-dependent proteases, including single-chain FtsH and double-subunit Clp protease complexes ClpAP, ClpBP, ClpCP, and ClpXP, which were activated as the fever of infected mice in vivo. The expression of genes ftsH, clpA/B/C, and clpP, but not clpX, were significantly upregulated in S. suis in response to heat stress, while were not changed notably under the treatments with several other stresses, including oxidative, acidic, and cold stimulation. FtsH and ClpP were required for S. suis survival within host blood under heat stress in vitro and in vivo. Deletion of ftsH or clpP attenuated the tolerance of S. suis to heat, oxidative and acidic stresses, and significantly impaired the bacterial survival within macrophages. Further analysis identified that repressor CtsR directly binds and controls the clpA/B/C and clpP operons and is relieved by heat stress. In summary, the deployments of multiple ATP-dependent proteases form a flexible heat stress response network that appears to allow S. suis to fine-tune the degradation or refolding of the misfolded proteins to maintain cellular homeostasis and optimal survival during infection.

5.
Emerg Microbes Infect ; 13(1): 2352435, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38703011

RESUMEN

Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.


Asunto(s)
Serogrupo , Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Streptococcus suis/patogenicidad , Streptococcus suis/genética , Streptococcus suis/clasificación , Streptococcus suis/efectos de los fármacos , Streptococcus suis/aislamiento & purificación , Animales , Porcinos , Humanos , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Enfermedades de los Porcinos/microbiología , Virulencia , Ratones , Genoma Bacteriano , Pez Cebra , Antibacterianos/farmacología , Filogenia , Pruebas de Sensibilidad Microbiana , Factores de Virulencia/genética
6.
PLoS Pathog ; 20(4): e1012169, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38640137

RESUMEN

Integrative and conjugative elements (ICEs) play a vital role in bacterial evolution by carrying essential genes that confer adaptive functions to the host. Despite their importance, the mechanism underlying the stable inheritance of ICEs, which is necessary for the acquisition of new traits in bacteria, remains poorly understood. Here, we identified SezAT, a type II toxin-antitoxin (TA) system, and AbiE, a type IV TA system encoded within the ICESsuHN105, coordinately promote ICE stabilization and mediate multidrug resistance in Streptococcus suis. Deletion of SezAT or AbiE did not affect the strain's antibiotic susceptibility, but their duple deletion increased susceptibility, mainly mediated by the antitoxins SezA and AbiEi. Further studies have revealed that SezA and AbiEi affect the genetic stability of ICESsuHN105 by moderating the excision and extrachromosomal copy number, consequently affecting the antibiotic resistance conferred by ICE. The DNA-binding proteins AbiEi and SezA, which bind palindromic sequences in the promoter, coordinately modulate ICE excision and extracellular copy number by binding to sequences in the origin-of-transfer (oriT) and the attL sites, respectively. Furthermore, AbiEi negatively regulates the transcription of SezAT by binding directly to its promoter, optimizing the coordinate network of SezAT and AbiE in maintaining ICESsuHN105 stability. Importantly, SezAT and AbiE are widespread and conserved in ICEs harbouring diverse drug-resistance genes, and their coordinated effects in promoting ICE stability and mediating drug resistance may be broadly applicable to other ICEs. Altogether, our study uncovers the TA system's role in maintaining the genetic stability of ICE and offers potential targets for overcoming the dissemination and evolution of drug resistance.


Asunto(s)
Proteínas Bacterianas , Streptococcus suis , Sistemas Toxina-Antitoxina , Streptococcus suis/genética , Streptococcus suis/efectos de los fármacos , Sistemas Toxina-Antitoxina/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/genética , Antibacterianos/farmacología , Conjugación Genética , Animales , Secuencias Repetitivas Esparcidas
7.
Vet Microbiol ; 292: 110062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518631

RESUMEN

Exosomes, which are small membrane-enclosed vesicles, are actively released into the extracellular space by a variety of cells. Growing evidence indicates that exosomes derived from virus-infected cells can selectively encapsulate viral proteins, genetic materials, or even entire virions. This enables them to mediate cell-to-cell communication and facilitate virus transmission. Classical swine fever (CSF) is a disease listed by the World Organisation for Animal Health (WOAH) Terrestrial Animal Health Code and must be reported to the organisation. It is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. Recent studies have demonstrated that extracellular vesicles originating from autophagy can facilitate the antibody-resistant spread of classical swine fever virus. However, due to the extreme difficulty in achieving a complete separation from virions, the role of exosomes during CSFV infection and proliferation remains elusive. In this study, we ingeniously chose to perform immunoprecipitation (IP) targeting the CSFV E2 protein, thereby achieving the complete removal of infectious virions. Subsequently, we discovered that the purified exosomes are shown to contain viral genomic RNA and partial viral proteins. Furthermore, exosomes secreted by CSFV-infected cells can evade CSFV-specific neutralizing antibodies, establish subsequent infection, and stimulate innate immune system after uptake by recipient cells. In summary, exosomes play a critical role in CSFV transmission. This is of great significance for in-depth exploration of the characteristics of CSFV and its complex interactions with the host.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Exosomas , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Fiebre Porcina Clásica/genética , Anticuerpos Neutralizantes , Proteínas Virales , Inmunidad Innata
8.
Microbes Infect ; : 105307, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38309574

RESUMEN

Bacterial DeoR family transcription regulators regulate multiple physiological processes. Little is known about the function of DeoR family regulators in streptococci. Here, we identified a novel DeoR family regulator, GlpR, from Streptococcus suis, a pathogen causing severe diseases in pigs and humans. GlpR was involved in glycerol utilization and exhibited specific signature residues at positions 30-31 (KV) which are crucial for DNA binding. Deletion of glpR (ΔglpR) showed a significant increase in relative growth rate in glycerol medium compared to the wild-type (WT) and complementary strains (CΔglpR). Employing RNA-seq analysis, ß-galactosidase activity analysis, and electrophoretic mobility shift assay, we discovered that GlpR directly represses the expression of glycerol metabolism-related genes pflB2, pflA1, and fsaA, encoding pyruvate formate-lyase and its activating enzyme, and fructose-6-phosphate aldolase, respectively. Compared to WT and CΔglpR, ΔglpR showed a reduced survival rate under oxidative stress and in murine macrophages and attenuated virulence in mice. GlpR probably enhances oxidative stress resistance and virulence in S. suis by functioning as a glycerol metabolic repressor decreasing energy consumption. These findings contribute to a better understanding of S. suis pathogenesis and enrich our knowledge of the biological functions of DeoR family regulators in streptococci.

9.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38400121

RESUMEN

Streptococcus suis (S. suis) is a zoonotic pathogen with multiple serotypes, and thus, multivalent vaccines generating cross-protection against S. suis infections are urgently needed to improve animal welfare and reduce antibiotic abuse. In this study, we established a systematic and comprehensive epitope prediction pipeline based on immunoinformatics. Ten candidate epitopes were ultimately selected for building the multi-epitope vaccine (MVSS) against S. suis infections. The ten epitopes of MVSS were all derived from highly conserved, immunogenic, and virulence-associated surface proteins in S. suis. In silico analyses revealed that MVSS was structurally stable and affixed with immune receptors, indicating that it would likely trigger strong immunological reactions in the host. Furthermore, mice models demonstrated that MVSS elicited high titer antibodies and diminished damages in S. suis serotype 2 and Chz infection, significantly reduced sequelae, induced cytokine transcription, and decreased organ bacterial burdens after triple vaccination. Meanwhile, anti-rMVSS serum inhibited five important S. suis serotypes in vitro, exerted beneficial protective effects against S. suis infections and significantly reduced histopathological damage in mice. Given the above, it is possible to develop MVSS as a universal subunit vaccine against multiple serotypes of S. suis infections.

10.
Virulence ; 15(1): 2306719, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251714

RESUMEN

The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.


Asunto(s)
Proteínas Bacterianas , Infecciones Estreptocócicas , Streptococcus suis , Animales , Ratones , Arginina , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrolasas/genética , Hidrolasas/metabolismo , Macrófagos , Infecciones Estreptocócicas/microbiología , Streptococcus suis/patogenicidad , Streptococcus suis/fisiología
11.
Virus Res ; 339: 199204, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37607596

RESUMEN

Circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses are highly diverse and have a broad range of hosts. In this study, we report the detection of Bo-Circo-like virus AH20-1 in the feces of diarrheal cattle. The virus has a circular genome of 3,912 nucleotides, three major putative open reading frames, and encodes a Rep gene of 310 amino acids. We found that the virus is closely related to the Bo-Circo-like virus CH strain, which belongs to the novel Kirkoviridae family. Furthermore, we conducted a nationwide surveillance program and found that the virus is prevalent in China (23.6%, 205/868), with the BCLa subtype being the predominant strain. Our findings suggest that the virus can infect sheep, highlighting the potential for cross-species transmission. Our pressure analysis indicates that the CRESS-DNA Kirkoviridae family has broad host adaptation, and that selection pressure played an important role in the evolution of its Rep genes. Our study underscores the need for continued epidemiological surveillance of this virus due to its widespread prevalence in our ruminant population and potential for cross-species transmission.


Asunto(s)
Animales Domésticos , ADN Viral , Animales , Bovinos , Ovinos , ADN Viral/genética , ADN Viral/química , ADN de Cadena Simple/genética , Filogenia , Genoma Viral , Virus ADN/genética , ADN Circular
12.
Virulence ; 14(1): 2249789, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37621097

RESUMEN

Streptococcus suis is a bacterium that can cause infections in pigs and humans. Although oxidative stress is common occurrence during bacterial growth and infection, the regulation networks of S. suis under oxidative stress remain poorly understood. To address this, we utilized RNA-Seq to reveal the transcriptional landscape of S. suis in response to H2O2 stress. We identified novel genes responsible for S. suis resistance to oxidative stress, including those involved in DNA repair or protection, and essential for the biosynthesis of amino acids and nucleic acids. In addition, we found that a novel aquaporin, Aagp, belonging to atypical aquaglyceroporins and widely distributed in diverse S. suis serotypes, plays a crucial role during H2O2 stress. By performing oxidative stress assays and measuring the intracellular H2O2 concentrations of the wild-type strain and Aagp mutants during H2O2 stress, we found that Aagp facilitated H2O2 efflux. Additionally, we found that Aagp might be involved in glycerol transport, as shown by the growth inhibition and H2O2 production in the presence of glycerol. Mice infection experiments indicated that Aagp contributed to S. suis virulence. This study contributes to understanding the mechanism of S. suis oxidative stress response, S. suis pathogenesis, and the function of aquaporins in prokaryotes.


Asunto(s)
Acuaporinas , Streptococcus suis , Humanos , Animales , Ratones , Porcinos , Peróxido de Hidrógeno/farmacología , Streptococcus suis/genética , Glicerol , Virulencia , Acuaporinas/genética
13.
Microbiol Spectr ; 11(3): e0504022, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37162348

RESUMEN

Emerging viruses are a constant threat to human and animal health. Boosepivirus is a novel picornavirus considered a gastrointestinal pathogen and has broken out in recent years. In 2020, we identified a strain of boosepivirus NX20-1 from Chinese calf feces and performed genetic characterization and evolutionary analysis. NX20-1 was closely related to the Japanese strain Bo-12-38/2009/JPN and belonged to Boosepivirus B. We found that 64 of 603 samples (10.6%) from 20 different provinces across the country were positive for boosepivirus by reverse transcription (RT)-PCR. Further, coinfection with other diarrheal pathogens was also present in 35 of these positive samples. Importantly, we found the prevalence of boosepivirus in sheep as well, indicating that Boosepivirus can infect different domestic animals. Our data suggest that boosepivirus is a potential diarrheal pathogen, but the pathogenicity and the mechanism of pathogenesis need further study. IMPORTANCE We identified a novel picornavirus, boosepivirus, for the first time in China. Genetic evolutionary analysis revealed that NX20-1 strain was closely related to the Japanese strain Bo-12-38/2009/JPN and belonged to Boosepivirus B. In addition, we found that the virus was prevalent in China with an overall positivity rate of 10.6% (64 of 603 samples), and there was significant coinfection with other pathogens. Importantly, we found the prevalence of boosepivirus in sheep as well, suggesting that boosepivirus has a risk of spillover and can be transmitted across species.


Asunto(s)
Enfermedades de los Bovinos , Coinfección , Humanos , Animales , Bovinos , Ovinos , Animales Domésticos , Reacción en Cadena de la Polimerasa , Enfermedades de los Bovinos/epidemiología , Diarrea , Filogenia
14.
Front Cell Infect Microbiol ; 13: 1138801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875517

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) is one of the leading causes of bloodstream infections in a broad spectrum of birds and mammals, thus poses a great threat to public health, while its underlying mechanism causing sepsis is not fully understood. Here we reported a high virulent ExPEC strain PU-1, which has a robust ability to colonize within host bloodstream, while induced a low level of leukocytic activation. Two serine protease autotransporters of Enterobacteriaceae (SPATEs), VatPU-1 and TshPU-1, were found to play critical roles for the urgent blood infection of strain PU-1. Although the Vat and Tsh homologues have been identified as virulence factors of ExPEC, their contributions to bloodstream infection are still unclear. In this study, VatPU-1 and TshPU-1 were verified to interact with the hemoglobin (a well-known mucin-like glycoprotein in red blood cell), degrade the mucins of host respiratory tract, and cleave the CD43 (a major cell surface component sharing similar O-glycosylated modifications with other glycoprotein expressed on leukocytes), suggesting that these two SPATEs have the common activity to cleave a broad array of mucin-like O-glycoproteins. These cleavages significantly impaired the chemotaxis and transmigration of leukocytes, and then inhibited the activation of diverse immune responses coordinately, especially downregulated the leukocytic and inflammatory activation during bloodstream infection, thus might mediate the evasion of ExPEC from immune clearance of blood leukocytes. Taken together, these two SPATEs play critical roles to cause a heavy bacterial load within bloodstream via immunomodulation of leukocytes, which provides a more comprehensive understanding how ExPEC colonize within host bloodstream and cause severe sepsis.


Asunto(s)
Escherichia coli Patógena Extraintestinal , Sepsis , Animales , Mucinas , Serina Endopeptidasas , Serina Proteasas , Porcinos , Tirotropina , Sistemas de Secreción Tipo V
15.
Vet Sci ; 10(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36977278

RESUMEN

Streptococcus suis serotype 2 (SS2) is a noteworthy zoonotic pathogen that has been responsible for large economic losses in pig production and a great threat to human health. Pentraxin 3 (PTX3) is an essential regulator of the innate immune response to bacterial pathogens; however, its role during SS2 infection is not fully understood. In this study, we found that the SS2 strain HA9801 induced a significant inflammatory response in the mouse air pouch model; this response was amplified by the treatment of exogenous PTX3 simultaneously in terms of the results of inflammatory cell recruitment and proinflammatory cytokine IL-6 production. In addition, PTX3 facilitated the phagocytosis of macrophage Ana-1 against SS2 strain HA9801. The supplementation of exogenous PTX3 significantly reduced the bacterial loads in a dose-dependent manner in lungs, livers and bloods of SS2-infected mice compared to the samples with HA9801 infection alone; this finding indicated that PTX3 may facilitate the bacterial clearance through enhancing the host inflammatory response during SS2 infection. Both PTX3 and SS2 capsular polysaccharide (CPS2) were required for the robust inflammatory response, implying that the host PTX3 protein and SS2 surface CPS2 modulate the host innate immune response in concert. All of these results suggested that PTX3 is a potential novel biological agent for the SS2 infection; however, the recommended dose of PTX3 must be evaluated strictly to avoid inducing an excessive inflammatory response that can cause serious tissue injury and animal death.

16.
Viruses ; 15(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36992396

RESUMEN

Canine diarrhea is a common intestinal illness that is usually caused by viruses, bacteria, and parasites, and canine diarrhea may induce morbidity and mortality of domestic dogs if treated improperly. Recently, viral metagenomics was applied to investigate the signatures of the enteric virome in mammals. In this research, the characteristics of the gut virome in healthy dogs and dogs with diarrhea were analyzed and compared using viral metagenomics. The alpha diversity analysis indicated that the richness and diversity of the gut virome in the dogs with diarrhea were much higher than the healthy dogs, while the beta diversity analysis revealed that the gut virome of the two groups was quite different. At the family level, the predominant viruses in the canine gut virome were certified to be Microviridae, Parvoviridae, Siphoviridae, Inoviridae, Podoviridae, Myoviridae, and others. At the genus level, the predominant viruses in the canine gut virome were certified to be Protoparvovirus, Inovirus, Chlamydiamicrovirus, Lambdavirus, Dependoparvovirus, Lightbulbvirus, Kostyavirus, Punavirus, Lederbergvirus, Fibrovirus, Peduovirus, and others. However, the viral communities between the two groups differed significantly. The unique viral taxa identified in the healthy dogs group were Chlamydiamicrovirus and Lightbulbvirus, while the unique viral taxa identified in the dogs with diarrhea group were Inovirus, Protoparvovirus, Lambdavirus, Dependoparvovirus, Kostyavirus, Punavirus, and other viruses. Phylogenetic analysis based on the near-complete genome sequences showed that the CPV strains collected in this study together with other CPV Chinese isolates clustered into a separate branch, while the identified CAV-2 strain D5-8081 and AAV-5 strain AAV-D5 were both the first near-complete genome sequences in China. Moreover, the predicted bacterial hosts of phages were certified to be Campylobacter, Escherichia, Salmonella, Pseudomonas, Acinetobacter, Moraxella, Mediterraneibacter, and other commensal microbiota. In conclusion, the enteric virome of the healthy dogs group and the dogs with diarrhea group was investigated and compared using viral metagenomics, and the viral communities might influence canine health and disease by interacting with the commensal gut microbiome.


Asunto(s)
Microviridae , Podoviridae , Siphoviridae , Virus , Lobos , Animales , Perros , Metagenómica , Filogenia , Diarrea/veterinaria , Myoviridae , Bacterias
18.
Microbes Infect ; 25(5): 105106, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36720402

RESUMEN

Klebsiella pneumoniae (Kp) is now recognized as an urgent threat to public health since the emergence of multidrug-resistant and hypervirulent isolates. We identified a hypervirulent K2 isolate from the milk samples possibly associated with an infection incident in children, which raised the alarm to the zoonotic potential of bovine mastitis Kp as a foodborne pathogen. Subsequently, numerous K1, K2, K3, K5, K54 and K57 strains were identified from mastitis milk samples, and showed high pathogenicity in infected mouse. Further analysis based on complete genomes found that these isolates showed closely evolutionary relationships with the human hypervirulent strains in diverse phylogenetic lineages, suggesting their potential risk to public health.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Femenino , Bovinos , Niño , Humanos , Animales , Ratones , Klebsiella pneumoniae/genética , Filogenia , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/veterinaria , Virulencia , Factores de Virulencia , Antibacterianos
19.
Pathogens ; 13(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38251332

RESUMEN

Apoptosis-enhancing nuclease (AEN), which shares close evolutionary relationships with the interferon-stimulated gene 20 protein (ISG20) homologs in humans, is a member of the DEDDh exonuclease family. Numerous studies on various pathogens have identified the essential roles of ISG20 in inhibiting virus replication. However, the fundamental functions of AEN during viral infection remain largely unknown. This study discovered that AEN expression was significantly upregulated in MARC-145 cells infected with Porcine epidemic diarrhea virus (PEDV) strain 85-7. In contrast, the amount of AEN protein decreased as viral replication increased. It was found that PEDV nsp1 and nsp5 mediated the decrease in AEN production, suggesting that an increase in AEN was not conducive to virus replication. By comparing AEN and its exonuclease-inactive mutant AEN-4A, we determined that the antiviral activity of AEN was independent of its exonuclease function. qPCR analyses revealed that AEN and AEN-4A could induce a significant increase in the transcription levels of IFN-α, IFN-ß, and ISGs (OASL, IFI44, IFIT2, ISG15, Mx1, Mx2), and that AEN-4A has a higher induction ability. Overexpression of AEN and AEN-4A in MARC-145 cells targeting IFN-ß knockdown or IFN-deficient Vero cells showed reduced or a complete loss of antiviral activity of both, suggesting that AEN may activate the type I IFN immune response and promote the expression of ISGs, thereby inhibiting PEDV replication. Taken together, our data prove the novel mechanism of AEN-mediated virus restriction.

20.
Viruses ; 14(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36560810

RESUMEN

Goose astrovirus (GAstV) is an important pathogen causing visceral gout and high mortality in goslings, which has broken out and spread across China. In 2021, a disease characterized by urate deposition on the visceral surface and 30% mortality occurred in commercial adult Landaise geese in Zhejiang Province, China. A systematic study identified an infecting astrovirus, designated ZJCX, that was efficiently isolated from a diseased goose with a chicken hepatocellular carcinoma cell line (LMH). In contrast to other GAstVs originating from goslings, ZJCX caused cytopathogenic effects in LMH cells, and the crystalline arrangement of viral particles was observed through transmission electron microscopy. Indeed, phylogenetic analysis and nucleotide homology comparison revealed that ZJCX isolate belongs to the genotype II cluster of GAstVs and displays 97.8-98.4% identity with other GAstV II strains. However, several specific mutations occurred in the polyprotein and capsid protein regions. Moreover, a pathogenicity assessment of ZJCX with a gosling model was conducted, and typical visceral gout was reproduced and led to 18% mortality. The viral loads of ZJCX in the blood, kidney, and liver were detected with specific primers after inoculation, which demonstrated that the kidney and liver presented viral loads peaking at seven days post-inoculation (dpi). Biochemical parameter examination showed that AST, ALT, γ-GT, UA, and BUN levels were significantly increased by GAstV, whereas body weight was reduced. Overall, this study indicated that the GAstV isolate could infect adult geese, and the results regarding the viral loads and biochemical parameters induced by ZJCX provide insight into GAstV pathogenicity.


Asunto(s)
Infecciones por Astroviridae , Avastrovirus , Gota , Enfermedades de las Aves de Corral , Animales , Gansos , Infecciones por Astroviridae/patología , Filogenia , Virulencia , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA