Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
J Biophotonics ; : e202400078, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934081

RESUMEN

Optical-resolution photoacoustic microscopy (OR-PAM) has been increasingly utilized for in vivo imaging of biological tissues, offering structural, functional, and molecular information. In OR-PAM, it is often necessary to make a trade-off between imaging depth, lateral resolution, field of view, and imaging speed. To improve the lateral resolution without sacrificing other performance metrics, we developed a virtual-point-based deconvolution algorithm for OR-PAM (VP-PAM). VP-PAM has achieved a resolution improvement ranging from 43% to 62.5% on a single-line target. In addition, it has outperformed Richardson-Lucy deconvolution with 15 iterations in both structural similarity index and peak signal-to-noise ratio on an OR-PAM image of mouse brain vasculature. When applied to an in vivo glass frog image obtained by a deep-penetrating OR-PAM system with compromised lateral resolution, VP-PAM yielded enhanced resolution and contrast with better-resolved microvessels.

2.
Comput Struct Biotechnol J ; 23: 2173-2189, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38827229

RESUMEN

The vast neuronal diversity in the human neocortex is vital for high-order brain functions, necessitating elucidation of the regulatory mechanisms underlying such unparalleled diversity. However, recent studies have yet to comprehensively reveal the diversity of neurons and the molecular logic of neocortical origin in humans at single-cell resolution through profiling transcriptomic or epigenomic landscapes, owing to the application of unimodal data alone to depict exceedingly heterogeneous populations of neurons. In this study, we generated a comprehensive compendium of the developing human neocortex by simultaneously profiling gene expression and open chromatin from the same cell. We computationally reconstructed the differentiation trajectories of excitatory projection neurons of cortical origin and inferred the regulatory logic governing lineage bifurcation decisions for neuronal diversification. We demonstrated that neuronal diversity arises from progenitor cell lineage specificity and postmitotic differentiation at distinct stages. Our data paves the way for understanding the primarily coordinated regulatory logic for neuronal diversification in the neocortex.

3.
Front Public Health ; 12: 1321860, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873298

RESUMEN

Background: The pain and sleep disorders caused by arthritis are health issues that have been re-emphasized with the aging population. However, the majority of research on arthritis and sleep disorders has focused on cases that have already been diagnosed with arthritis. This research aims to explore the correlation between sleep duration and new-onset arthritis in middle-aged and older adult individuals. Methods: Utilizing data from the China Health and Retirement Longitudinal Study from baseline (2011) to the Wave 3 follow-up (2018), we conducted a 7-year longitudinal investigation targeting populations with valid sleep questionnaire records and without arthritis. Sleep duration was assessed from nighttime sleep and daytime nap records. The new-onset of arthritis was determined based on self-reported diagnosis. We employed different logistic regression models to consider the potential impact of sleep duration on arthritis and conducted mediation analyses to assess the involvement of BMI in the association between sleep duration and the new-onset risk of arthritis. Results: Out of the 6,597 individuals analyzed in the cohort, 586 (8.9%) were diagnosed with new-onset arthritis. Median sleep duration was notably shorter in the new-onset arthritis group (6.63 vs. 6.41 h, p < 0.05). There was a notable negative correlation found between new-onset risk of arthritis and sleep duration, with each Interquartile Range (IQR) increment in sleep leading to a 16% risk reduction (OR: 0.864; 95% CI: 0.784-0.954). Stratified analyses revealed BMI as a potential modifier in the sleep-arthritis relationship (P for interaction = 0.05). Mediation analyses further showed that about 3.5% of the association was mediated by BMI. Additionally, the inclusion of sleep duration improved the arthritis predictive power of our model, with an IDI of 0.105 (0.0203, 0.1898) and an NRI of 0.0013 (0.0004, 0.0022) after adding sleep duration to the basic model. Conclusion: In the middle-aged and older adult demographic of China, increased sleep duration is associated with a decreased new-onset risk of arthritis, with BMI potentially playing a role in mediating this connection.


Asunto(s)
Artritis , Sueño , Humanos , China/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Artritis/epidemiología , Anciano , Estudios Prospectivos , Sueño/fisiología , Estudios Longitudinales , Factores de Riesgo , Trastornos del Sueño-Vigilia/epidemiología , Encuestas y Cuestionarios , Factores de Tiempo , Índice de Masa Corporal , Autoinforme , Duración del Sueño
4.
Medicine (Baltimore) ; 103(18): e37968, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701290

RESUMEN

To investigate the relationship between several factors and urinary stone as well as different stone compositions. To guide the diagnosis, treatment, and prevention of urinary stone recurrence. We used bidirectional Mendelian randomization to analyze the causal relationship between hypertension and urinary stones, diabetes and urinary stones, and body mass index (BMI) and urinary stones. We retrospectively analyzed the medical records of patients with urinary stones admitted to a tertiary care hospital in Chongqing, China, from July 2015 to October 2022. Patients were included when they were first diagnosed with urinary stones. The odds ratio of calculi on hypertension estimated by inverse variance weighted was 8.46 (95%CI: 4.00-17.90, P = 2.25 × 10-8). The stone composition analysis showed that there were 3101 (67.02%) mixed, 1322 (28.57%) calcium oxalate monohydrate, 148 (3.20%) anhydrous uric acid, 16 (0.35%) magnesium ammonium phosphate hexahydrate, 11 (0.24%) dicalcium phosphate dihydrate, 10 (0.22%) carbonate apatite, 8 (0.17%) L-cystine, 4 ammonium uric acid (0.09%), and 7 other stone types (0.15%). Mendelian randomization studies have proven that urinary stones may be a potential risk factor for hypertension, while there is no causal relationship between diabetes and stones, BMI, and stones. Our retrospective study has shown that urinary stone components are closely associated with sex, age, hypertension, diabetes, and BMI. It is reasonable to suspect that treating a single stone component is ineffective in preventing recurrence. We also found that the peak incidence of urinary stones was at the most active stage of most people's working lives.


Asunto(s)
Índice de Masa Corporal , Hipertensión , Análisis de la Aleatorización Mendeliana , Urolitiasis , Humanos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , China/epidemiología , Hipertensión/epidemiología , Urolitiasis/epidemiología , Urolitiasis/genética , Adulto , Factores de Riesgo , Diabetes Mellitus/epidemiología , Diabetes Mellitus/genética , Anciano , Cálculos Urinarios/genética , Cálculos Urinarios/epidemiología
5.
Photoacoustics ; 38: 100610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38726025

RESUMEN

Expansion microscopy (ExM) is a promising technology that enables nanoscale imaging on conventional optical microscopes by physically magnifying the specimens. Here, we report the development of a strategy that enables i) on-demand labeling of subcellular organelles in live cells for ExM through transfection of fluorescent proteins that are well-retained during the expansion procedure; and ii) non-fluorescent chromogenic color-development towards efficient bright-field and photoacoustic imaging in both planar and volumetric formats, which is applicable to both cultured cells and biological tissues. Compared to the conventional ExM methods, our strategy provides an expanded toolkit, which we term as expansion fluorescence and photoacoustic microscopy (ExFLPAM), by allowing on-demand fluorescent protein labeling of cultured cells, as well as non-fluorescent absorption contrast-imaging of biological samples.

6.
BMC Gastroenterol ; 24(1): 153, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702642

RESUMEN

BACKGROUND: Liver diseases were significant source of early readmission burden. This study aimed to evaluate the 30-day unplanned readmission rates, causes of readmissions, readmission costs, and predictors of readmission in patients with acute liver failure (ALF). METHODS: Patients admitted for ALF from 2019 National Readmission Database were enrolled. Weighted multivariable logistic regression models were applied and based on Directed Acyclic Graphs. Incidence, causes, cost, and predictors of 30-day unplanned readmissions were identified. RESULTS: A total of 3,281 patients with ALF were enrolled, of whom 600 (18.3%) were readmitted within 30 days. The mean time from discharge to early readmission was 12.6 days. The average hospital cost and charge of readmission were $19,629 and $86,228, respectively. The readmissions were mainly due to liver-related events (26.6%), followed by infection (20.9%). The predictive factors independently associated with readmissions were age, male sex (OR 1.227, 95% CI 1.023-1.472; P = 0.028), renal failure (OR 1.401, 95% CI 1.139-1.723; P = 0.001), diabetes with chronic complications (OR 1.327, 95% CI 1.053-1.672; P = 0.017), complicated hypertension (OR 1.436, 95% CI 1.111-1.857; P = 0.006), peritoneal drainage (OR 1.600, 95% CI 1.092-2.345; P = 0.016), etc. CONCLUSIONS: Patients with ALF are at relatively high risk of early readmission, which imposes a heavy medical and economic burden on society. We need to increase the emphasis placed on early readmission of patients with ALF and establish clinical strategies for their management.


Asunto(s)
Bases de Datos Factuales , Fallo Hepático Agudo , Readmisión del Paciente , Humanos , Readmisión del Paciente/estadística & datos numéricos , Masculino , Femenino , Persona de Mediana Edad , Fallo Hepático Agudo/economía , Fallo Hepático Agudo/terapia , Factores de Riesgo , Adulto , Anciano , Costos de Hospital/estadística & datos numéricos , Factores Sexuales , Factores de Tiempo , Modelos Logísticos , Factores de Edad , Incidencia
7.
Int J Pharm ; 659: 124193, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703934

RESUMEN

Polyethylene glycol (PEG) is a popular biocompatible polymer and PEGylated nanoparticles passively accumulate in tumor tissues because of their enhanced permeability and retention effects. Recently, the anti-PEG immunity of PEGylated nanoparticles has become an issue that needs to be solved for their clinical applications. Dendrimers are highly branched and well-defined polymers with many terminal groups, which act as potent drug carriers. In this study, we examined the pharmacokinetics, biodistribution, anti-PEG immunity, and tumor accumulation of a fully PEGylated polyamidoamine (PAMAM) dendrimer after the first and second injections and compared them to those of a PEGylated liposome with the same lipid component as Doxil®. The PEGylated dendrimer showed greater blood circulation than that of the PEGylated liposome after the first and second injections in rats. In mice injected with the PEGylated dendrimer, much less anti-PEG immunoglobulin M (IgM) was generated than that in mice injected with the PEGylated liposome. The PEGylated dendrimer accumulated in the tumor after both the first and second injections. Our results indicated that the PEGylated dendrimer with a small size and high PEG density showed attenuated anti-PEG immunity and overcame the accelerated blood clearance phenomenon, which is useful for drug delivery systems for cancer treatment.


Asunto(s)
Dendrímeros , Liposomas , Polietilenglicoles , Animales , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Dendrímeros/farmacocinética , Dendrímeros/química , Distribución Tisular , Masculino , Ratones , Doxorrubicina/farmacocinética , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Inmunoglobulina M/sangre , Ratas , Ratas Sprague-Dawley , Ratones Endogámicos BALB C , Femenino , Línea Celular Tumoral , Nanopartículas
8.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38610534

RESUMEN

This study explores the important role of assessing force levels in accurately controlling upper limb movements in human-computer interfaces. It uses a new method that combines entropy to improve the recognition of force levels. This research aims to differentiate between different levels of isometric contraction forces using electroencephalogram (EEG) signal analysis. It integrates eight different entropy measures: power spectrum entropy (PSE), singular spectrum entropy (SSE), logarithmic energy entropy (LEE), approximation entropy (AE), sample entropy (SE), fuzzy entropy (FE), alignment entropy (PE), and envelope entropy (EE). The findings emphasize two important advances: first, including a wide range of entropy features significantly improves classification efficiency; second, the fusion entropy method shows exceptional accuracy in classifying isometric contraction forces. It achieves an accuracy rate of 91.73% in distinguishing between 15% and 60% maximum voluntary contraction (MVC) forces, along with 69.59% accuracy in identifying variations across 15%, 30%, 45%, and 60% MVC. These results illuminate the efficacy of employing fusion entropy in EEG signal analysis for isometric contraction detection, heralding new opportunities for advancing motor control and facilitating fine motor movements through sophisticated human-computer interface technologies.


Asunto(s)
Electroencefalografía , Contracción Isométrica , Humanos , Entropía , Movimiento , Reconocimiento en Psicología
9.
Sci Adv ; 10(12): eadk1278, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507481

RESUMEN

Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.


Asunto(s)
Placenta , Placentación , Embarazo , Femenino , Ratones , Animales , Placenta/diagnóstico por imagen , Microscopía/métodos , Imagen Óptica , Microscopía Intravital
10.
Nat Prod Res ; : 1-8, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472190

RESUMEN

Eleven compounds were obtained from Portulaca oleracea L., including two novel ketone alkaloids, (1, 2), 4-hydroxy-3-methoxybenzamide (3) (isolated for the first time), ß-adenosine (4), oleracrylimide A and B (5, 6), oleracein H, C, D, Q and A (7-11). The two novel ketone alkaloids were identified as 5-acetyl-5-methylcyclopent-2-ene-1-carboxamide (1), named oleraciamide H, and (2 R,3S,4R,5R)-5-((R)-1,2-dihydroxyethyl)-3,4-dihydroxytetrahydrofuran-2-yl glycinate (2), named oleracone Q by spectroscopic methods, including 1D, 2D NMR and compound fingerprints. Additionally, their anti-inflammatory activities were tested via RAW 264.7 cells induced by LPS and found that they could significantly inhibit the release of IL-1ß and TNF-α.

11.
Lipids Health Dis ; 23(1): 79, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481325

RESUMEN

OBJECTIVE: Insulin resistance (IR) imposes a significant burden on inflammatory diseases, and the triglyceride-glucose (TyG) index, which is an easily accessible indicator for detecting IR, holds great application potential in predicting the risk of arthritis. The aim of this study is to analyze the association between the TyG index and the risk of new-onset arthritis in the common population aged over 45 using a prospective cohort study design. METHOD: This population-based cohort study involved 4418 participants from the China Health and Retirement Longitudinal Study (from Wave 1 to Wave 4). Multivariate logistic regression models were employed to investigate the association between the TyG index and new-onset arthritis, and RCS analyses were used to investigate potential non-linear relationships. Moreover, decision trees were utilized to identify high-risk populations for incident arthritis. RESULT: Throughout a 7-year follow-up interval, it was found that 396 participants (8.96%) developed arthritis. The last TyG index quartile group (Q4) presented the highest risk of arthritis (OR, 1.39; 95% CI, 1.01, 1.91). No dose-response relationship between the TyG index and new-onset arthritis was identified (Poverall=0.068, Pnon-linear=0.203). In the stratified analysis, we observed BMI ranging from 18.5 to 24 exhibited a heightened susceptibility to the adverse effects of the TyG index on the risk of developing arthritis (P for interaction = 0.035). CONCLUSION: The TyG index can be used as an independent risk indicator for predicting the start of new-onset arthritis within individuals aged 45 and above within the general population. Improving glucose and lipid metabolism, along with insulin resistance, may play a big part in improving the primary prevention of arthritis.


Asunto(s)
Artritis , Resistencia a la Insulina , Humanos , Estudios de Cohortes , Estudios Longitudinales , Estudios Prospectivos , Artritis/diagnóstico , Artritis/epidemiología , Glucosa , Factores de Riesgo , Triglicéridos , Glucemia , Biomarcadores
12.
Adv Drug Deliv Rev ; 208: 115237, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447931

RESUMEN

Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.


Asunto(s)
Investigación Biomédica , Bioimpresión , Animales , Humanos , Bioimpresión/métodos , Imagenología Tridimensional , Reproducibilidad de los Resultados , Organoides , Ingeniería de Tejidos/métodos
13.
Cell Stem Cell ; 31(4): 467-483.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38537631

RESUMEN

Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.


Asunto(s)
Lesiones Encefálicas , Perforación Intestinal , Trastornos Motores , Nacimiento Prematuro , Lactante , Femenino , Recién Nacido , Humanos , Animales , Ratones , Recien Nacido Prematuro , Perforación Intestinal/complicaciones , Ventrículos Laterales , Nicho de Células Madre , Trastornos Motores/complicaciones , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/diagnóstico por imagen
14.
Nat Commun ; 15(1): 1599, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383552

RESUMEN

Lipids play crucial roles in many biological processes. Mapping spatial distributions and examining the metabolic dynamics of different lipid subtypes in cells and tissues are critical to better understanding their roles in aging and diseases. Commonly used imaging methods (such as mass spectrometry-based, fluorescence labeling, conventional optical imaging) can disrupt the native environment of cells/tissues, have limited spatial or spectral resolution, or cannot distinguish different lipid subtypes. Here we present a hyperspectral imaging platform that integrates a Penalized Reference Matching algorithm with Stimulated Raman Scattering (PRM-SRS) microscopy. Using this platform, we visualize and identify high density lipoprotein particles in human kidney, a high cholesterol to phosphatidylethanolamine ratio inside granule cells of mouse hippocampus, and subcellular distributions of sphingosine and cardiolipin in human brain. Our PRM-SRS displays unique advantages of enhanced chemical specificity, subcellular resolution, and fast data processing in distinguishing lipid subtypes in different organs and species.


Asunto(s)
Microscopía , Microscopía Óptica no Lineal , Animales , Ratones , Humanos , Microscopía Óptica no Lineal/métodos , Espectrometría Raman/métodos , Lípidos
15.
J Biomed Opt ; 29(Suppl 1): S11521, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38323297

RESUMEN

Significance: Photoacoustic microscopy (PAM) offers advantages in high-resolution and high-contrast imaging of biomedical chromophores. The speed of imaging is critical for leveraging these benefits in both preclinical and clinical settings. Ongoing technological innovations have substantially boosted PAM's imaging speed, enabling real-time monitoring of dynamic biological processes. Aim: This concise review synthesizes historical context and current advancements in high-speed PAM, with an emphasis on developments enabled by ultrafast lasers, scanning mechanisms, and advanced imaging processing methods. Approach: We examine cutting-edge innovations across multiple facets of PAM, including light sources, scanning and detection systems, and computational techniques and explore their representative applications in biomedical research. Results: This work delineates the challenges that persist in achieving optimal high-speed PAM performance and forecasts its prospective impact on biomedical imaging. Conclusions: Recognizing the current limitations, breaking through the drawbacks, and adopting the optimal combination of each technology will lead to the realization of ultimate high-speed PAM for both fundamental research and clinical translation.


Asunto(s)
Microscopía , Técnicas Fotoacústicas , Microscopía/métodos , Estudios Prospectivos , Técnicas Fotoacústicas/métodos , Análisis Espectral , Rayos Láser
16.
J Stroke Cerebrovasc Dis ; : 107636, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38346661

RESUMEN

PURPOSE: To explore possible mechanism(s) underlying beneficial effects of acupuncture treatment for alleviating focal cerebral infarction-induced neuronal injury, mitochondrial biogenesis, energy metabolism, oxidative stress and dendrite regeneration were evaluated in rats with experimentally induced cerebral ischemia and dendron reperfusion. MATERIALS AND METHODS: Rats were randomly assigned to three groups (sham-operated, operated group without acupuncture, operated group with acupuncture). RT-PCR and Western blotting were used to assess variations of hippocampal cell mitochondrial DNA (mtDNA) copy number and mRNA and protein expression levels associated with key mitochondrial biogenesis proteins, namely peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiration factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). To evaluate mitochondrial oxidative phosphorylation and respiratory function in ischemic tissues, oxidative phosphorylation protein complex expression levels were assessed via Western blot analysis, mitochondrial membrane potential (MMP) was assessed via confocal microscopy and flow cytometry and adenosine triphosphate (ATP) concentration was assessed using an enzymatic fluorescence-based assay. Immunofluorescence staining was used to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Additionally, oxidative stress levels were assessed based on superoxide dismutase (SOD) activity, lipid oxidation levels (malondialdehyde, MDA) and glutathione (GSH) levels. Meanwhile, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl staining, transmission electron microscopy observation and neuro behavioral status were used to determine cerebral infarction volume and extent of brain injury. RESULTS: Acupuncture treatment effectively stimulated mRNA-level and protein-level expression associated with PGC-1α, NRF-1 and TFAM and increased levels of electron transport chain complexes I, IV and V, thereby increasing the ATP concentration, maintaining mitochondrial membrane potential, and promoting dendron regeneration levels. Meanwhile, in hippocampal neurons SOD activity and the glutathione/glutathione disulfide (GSH/GSSG) ratio increased and MDA level decreased. CONCLUSION: Acupuncture treatment after ischemic injury promoted mitochondrial biogenesis, as reflected by beneficially increased mitochondrial oxidative phosphorylation complex protein levels and brain tissue energy supply, while preventing oxidative stress injury. These results should guide future explorations to elucidate acupuncture-based mechanisms for alleviating neuronal injury triggered by acute cerebral ischemia.

18.
BMC Public Health ; 24(1): 147, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200420

RESUMEN

BACKGROUND: Low back pain is the leading cause of productivity loss, imposes a significant economic burden on the patients and society. Oxidative stress is considered a critical factor in the complex pathophysiological process and pathogenic mechanism of low back pain. Adjustment dietary pattern can effectively increase antioxidant biomarkers levels within the body to reduce oxidative stress. The composite dietary antioxidant index (CDAI) serves a reliable scoring system for quantifying the potential dietary antioxidant capacity of daily diets. OBJECTIVE: We aim to investigate the potential association between CDAI and low back pain, in order to enhance the management of low back pain through dietary guidance. METHODS: This study included 17,682 participants from the National Health and Nutrition Examination Survey (NHANES) 1999-2000, 2001-2002, 2003-2004 and 2009-2010. The weighted logistic regression model was used to investigate the association between CDAI and low back pain, while restricted cubic spline (RCS) was employed to examine non-linear trend and cutoffs. RESULTS: After adjusting for all confounders, the results showed that there was no significant association between CDAI and low back pain. However, individuals in the highest quartile of CDAI exhibited an 11.7% less likelihood of experiencing a low back pain than those in the lowest quartile (OR = 0.883; 95% CI [0.787,0.991], P = 0.034), and the trend test was also significant (P for trend < 0.001). RCS indicated a linear relationship between CDAI and low back pain (P for non-linear = 0.876). Gender subgroup analysis showed that this negative association was significant in the female population (OR = 0.983; 95% CI [0.968, 0.998], P = 0.027), and females in the highest quartile of CDAI were 19.7% less likely to suffer low back pain than those in the lowest quartile (OR = 0.803; 95% CI [0.682,0.945], P = 0.008). Additionally, the changes in zinc (OR = 1.009; 95% CI [1.002, 1.016], P = 0.015) and selenium (OR = 0.379; 95% CI [0.164, 0.875], P = 0.023) per milligram were independently associated with low back pain. CONCLUSION: The fully adjusted model showed no significant association between CDAI and low back pain, but it was significant in quartiles. Meanwhile, subgroup analysis by gender revealed a negative association between CDAI and low back pain in the female population. Additionally, the findings of this study also suggested that the antioxidant diets should be studied in a dietary pattern context.


Asunto(s)
Antioxidantes , Dolor de la Región Lumbar , Adulto , Femenino , Humanos , Estudios Transversales , Encuestas Nutricionales , Dolor de la Región Lumbar/epidemiología , Dieta
19.
Heliyon ; 10(1): e24229, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38234920

RESUMEN

Background: Plantar fasciitis (PF) is the most common cause of chronic heel pain among adults. Extracorporeal shock wave therapy (ESWT) is the recommended in the current guidelines, and the small needle-knife yields acceptable clinical effects for musculoskeletal pain. Objective: To systematically compare the efficacy of the small needle-knife versus ESWT for the treatment of PF. Methods: The present review was registered in the International Prospective Register of Systematic Reviews (i.e., "PROSPERO", CRD42023448813). Two of the authors searched electronic databases for randomized controlled trials (RCTs) comparing the small needle-knife versus ESWT for the treatment of PF, and collected outcomes including curative effect, pain intensity, and function. Risk of bias was assessed using the Cochrane Handbook Risk of Bias tool and the quality of the RCTs was evaluated according to the Jadad Scale. The same authors independently performed data extraction from the included studies, which were imported into Review Manager version 5.4.1(Copenhagen: Nordic Cochrane Centre, The Cochrane Collaboration, 2020) for meta-analysis. Results: The initial literature search retrieved 886 studies, of which 6 were eventually included in this study. Meta-analysis revealed no significant difference in curative effect (OR = 1.87; 95 % CI [0.80, 4.37], p = .15) nor short-term pain improvement (MD = 2.20; 95 % CI [-2.77, 7.16], p = .39) between the small needle-knife and ESWT. However, the small needle-knife may be more effective than ESWT for pain improvement in mid-term (MD = 9.11; 95 % CI [5.08, 13.15], p< .00001) and long-term follow-ups (MD = 10.71; 95 % CI [2.18, 19.25], p< .00001). Subgroup analysis revealed that the small needle-knife combined with a corticosteroid injection yielded a statistically significant difference in reduction of pain intensity at all follow-ups (MD = 4.84; 95 % CI [1.33, 8.36], p = .007; MD = 10.99; 95 % CI [8.30, 13.69], p< .00001; MD = 17.87; 95 % CI [15.26, 20.48], p< .00001). Meta-analysis revealed no statistical differences in short-term (MD = 1.34; 95 % CI [-3.19, 5.86], p = .56) and mid-term (MD = 2.75; 95 % CI [-1.21, 6.72], p = . 17) functional improvement between the needle-knife and ESWT groups. In a subgroup analysis of moderate-quality studies, the small needle-knife demonstrated a favorable effect on mid-term functional improvement (MD = 1.58; 95 % CI [0.52, 2.65], p = .004), with low heterogeneity (χ2 = 0.77, p = .038, I2 = 0 %). Conclusion: Pain reduction and functional improvement are essential for the treatment of PF. Therefore, treatment using the small needle-knife may be superior to ESWT. Results of this systematic review and meta-analysis may provide alternative treatment options for patients with PF as well as more reliable, evidence-based recommendations supporting use of the small needle-knife.

20.
Adv Mater ; 36(3): e2302297, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37565385

RESUMEN

Transition metal dichalcogenide (TMDC) films exhibit rich phases and superstructures, which can be controlled by the growth conditions as well as post-growth annealing treatment. Here, the selective growth of monolayer TaTe2 films with different phases as well as superstructures using molecular beam epitaxy (MBE) is reported. Monolayer 1H-TaTe2 and 1T-TaTe2 films can be selectively controlled by varying the growth temperature, and their different electronic structures are revealed through the combination of angle-resolved photoemission spectroscopy measurements (ARPES) and first-principles calculations. Moreover, post-growth annealing of the 1H-TaTe2 film further leads to a transition from a 19 × 19 $\sqrt {19}{\times }\sqrt {19}$ superstructure to a new 2 × 2 superstructure, where two gaps are observed in the electronic structure and persist up to room temperature. First-principles calculations reveal the role of the phonon instability in the formation of superstructures and the effect of local atomic distortions on the modified electronic structures. This work demonstrates the manipulation of the rich phases and superstructures of monolayer TaTe2 films by controlling the growth kinetics and post-growth annealing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...