Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virology ; 595: 110070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657363

RESUMEN

Foot-and-mouth disease is a highly contagious and infectious disease affecting cloven-hoofed animals. Disease control is complicated by its highly contagious nature and antigenic diversity. Host microRNAs (miRNAs) are post-transcriptional regulators that either promote or repress viral replications in virus infection. In the present study, we found that ssc-miR-7139-3p (Sus scrofa miR-7139-3p) was significantly up-regulated in host cells during foot-and-mouth disease virus (FMDV) infection. Overexpression of miR-7139-3p attenuated FMDV replication, whereas inhibition promoted FMDV replication. In addition, the survival rate of FMDV infected suckling mice was increased through injection of miR-7139-3p agomiR. Further studies revealed that miR-7139-3p targets Bcl-2 to initiate the apoptotic pathway and caspase-3 cleaved 3Cpro behind the 174th aspartic acid (D174), which eventually promotes the degradation of 3Cpro. Overall, our findings demonstrate that miR-7139-3p suppresses FMDV replication by promoting degradation of 3Cpro through targeting the apoptosis-negative regulatory gene Bcl-2.


Asunto(s)
Apoptosis , Virus de la Fiebre Aftosa , Fiebre Aftosa , MicroARNs , Proteínas Proto-Oncogénicas c-bcl-2 , Replicación Viral , Animales , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Fiebre Aftosa/virología , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteasas Virales 3C/metabolismo , Línea Celular , Sus scrofa , Interacciones Huésped-Patógeno , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Proteolisis , Caspasa 3/metabolismo , Caspasa 3/genética
2.
Viruses ; 16(4)2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675887

RESUMEN

PRRS is a viral disease that profoundly impacts the global swine industry, causing significant economic losses. The development of a novel and effective vaccine is crucial to halt the rapid transmission of this virus. There have been several vaccination attempts against PRRSV using both traditional and alternative vaccine design development approaches. Unfortunately, there is no currently available vaccine that can completely control this disease. Thus, our study aimed to develop an mRNA vaccine using the antigens expressed by single or fused PRRSV structural proteins. In this study, the nucleotide sequence of the immunogenic mRNA was determined by considering the antigenicity of structural proteins and the stability of spatial structure. Purified GP5 protein served as the detection antigen in the immunological evaluation. Furthermore, cellular mRNA expression was detected by immunofluorescence and western blotting. In a mice experiment, the Ab titer in serum and the activation of spleen lymphocytes triggered by the antigen were detected by ELISA and ICS, respectively. Our findings demonstrated that both mRNA vaccines can significantly stimulate cellular and humoral immune responses. More specifically, the GP5-mRNA exhibited an immunological response that was similar to that of the commercially available vaccine when administered in high doses. To conclude, our vaccine may show promising results against the wild-type virus in a natural host.


Asunto(s)
Anticuerpos Antivirales , Inmunidad Celular , Inmunidad Humoral , Ratones Endogámicos BALB C , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Proteínas del Envoltorio Viral , Vacunas Virales , Vacunas de ARNm , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Ratones , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Porcinos , Femenino , Proteínas Estructurales Virales/inmunología , Proteínas Estructurales Virales/genética , ARN Mensajero/genética
3.
Cells ; 13(6)2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38534383

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-ß and IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was evident by decreased IFN-ß, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3 phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5 and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that HDAC5 acts as a positive modulator of IFN-ß production during viral infection, while FMDV capsid protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to facilitate viral replication.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Interferón Tipo I , Animales , Proteínas de la Cápside/metabolismo , Transducción de Señal , Fiebre Aftosa/metabolismo , Inmunidad Innata , Interferón Tipo I/metabolismo
4.
FASEB J ; 38(3): e23467, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38329325

RESUMEN

Lumpy skin disease (LSD) is a severe animal infectious disease caused by lumpy skin disease virus (LSDV), inducing extensive nodules on the cattle mucosa or the scarfskin. LSDV genome encodes multiple proteins to evade host innate immune response. However, the underlying molecular mechanisms are poorly understood. In this study, we found that LSDV could suppress the expression of IFN-ß and interferon-stimulated genes (ISGs) in MDBK cells during the early stage of infection. Subsequently, an unbiased screen was performed to screen the LSDV genes with inhibitory effects on the type I interferon (IFN-I) production. ORF127 protein was identified as one of the strongest inhibitory effectors on the expression of IFN-ß and ISGs, meanwhile, the 1-43 aa of N-terminal of ORF127 played a vital role in suppressing the expression of IFN-ß. Overexpression of ORF127 could significantly promote LSDV replication through inhibiting the production of IFN-ß and ISGs in MDBK cells. Mechanism study showed that ORF127 specifically interacted with TBK1 and decreased the K63-linked polyubiquitination of TBK1 which suppressed the phosphorylation of TBK1 and ultimately decreased the production of IFN-ß. In addition, truncation mutation analysis indicated that the 1-43 aa of N-terminal of ORF127 protein was the key structural domain for its interaction with TBK1. In short, these results validated that ORF127 played a negative role in regulating IFN-ß expression through cGAS-STING signaling pathway. Taken together, this study clarified the molecular mechanism of ORF127 gene antagonizing IFN-I-mediated antiviral, which will helpfully provide new strategies for the treatment and prevention of LSD.


Asunto(s)
Interacciones Huésped-Patógeno , Interferón Tipo I , Virus de la Dermatosis Nodular Contagiosa , Proteínas Serina-Treonina Quinasas , Animales , Bovinos , Inmunidad Innata , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Interferón beta/metabolismo , Virus de la Dermatosis Nodular Contagiosa/metabolismo , Transducción de Señal , Ubiquitinación , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Front Microbiol ; 13: 1065894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36519172

RESUMEN

Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.

6.
Viruses ; 11(8)2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394868

RESUMEN

Tumor suppressor protein p53 (p53) is a master transcription factor that plays key roles in cell cycle arrest, apoptosis, senescence, and metabolism, as well as regulation of innate immunity during virus infection. In order to facilitate their replication and spreading, viruses have evolved to manipulate p53 function through different strategies, with some requiring active p53 while others demand reduction/inhibition of p53 activity. However, there are no clear-cut reports about the roles of p53 during the infection of foot-and-mouth disease virus (FMDV), the causative agent of a highly contagious foot-and-mouth disease (FMD) of cloven-hoofed animals. Here we showed that p53 level was dynamically regulated during FMDV infection, being degraded at the early infection stage but recovered to the basal level at the late stage. Cells depleted of p53 showed inhibited FMDV replication and enhanced expression of the immune-related genes, whereas overexpression of p53 didn't affect the viral replication. Viral challenge assay with p53 knockout mice obtained similar results, with viral load decreased, histopathological changes alleviated, and lifespan extended in the p53 knockout mice. Together, these data demonstrate that basal level p53 is required for efficient FMDV replication by suppressing the innate immunity.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Fiebre Aftosa/metabolismo , Interacciones Huésped-Patógeno/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Cricetinae , Fiebre Aftosa/virología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Inmunidad Innata , Porcinos , Proteína p53 Supresora de Tumor/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA