Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Dis Markers ; 2022: 4964793, 2022.
Article En | MEDLINE | ID: mdl-36157217

As the most invasive and lethal subtype of breast cancer (BC), triple-negative breast carcinoma (TNBC) is of increasing interest. However, the androgen receptor (AR) still has an unclear role in TNBC. The current study is aimed at testing the diagnostic and therapeutic performance of novel biomarkers for AR-positive TNBC. The GSE76124 dataset was analyzed by combining WGCNA and other bioinformatics methods. Subsequently, function enrichment analysis was applied to identify the relationships between these differential expression genes (DEGs). Subsequently, the protein-protein interaction network was established, and the hub genes were identified by Cytoscape software. Eventually, the miRNA-hub gene modulate network was developed and the Drug-Gene Interaction Database (DGIdb) was applied to verify the potential drugs for AR-positive TNBC. In the current research, 88 DEGs in total were selected from the intersection of the purple module genes identified by WGCNA and limma package. TFF1, FOXA1, ESR1, AGR2, TFF3, AGR3, GATA3, XBP1, SPDEF, and TOX3 were selected as hub genes by the MCC method, which were all upregulated. The survival analysis suggested that TFF1 was the only one related to significant lower survival rate in TNBC. Ultimately, hsa-miR-520g-3p and hsa-miR-520h were found taking part in the regulation of TFF1, and 2 small molecules were identified as the potential targets for AR-positive TNBC treatment. As a result, our study suggested that hsa-miR-520g-3p, hsa-miR-520h, and TFF1 might have significant potential values for AR-positive TNBC diagnosis and prognosis prediction. TFF1, hsa-miR-520g-3, and hsa-miR-520h may serve as the novel therapeutic targets, and our findings offer further insights into the therapy of AR-positive TNBC.


MicroRNAs , Triple Negative Breast Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Mucoproteins/genetics , Mucoproteins/metabolism , Oncogene Proteins/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
2.
PLoS One ; 16(11): e0254283, 2021.
Article En | MEDLINE | ID: mdl-34797837

Breast cancer (BC) is the most common malignancy in female, but the role of androgen receptor (AR) in triple-negative breast cancer (TNBC) is still unclear. This study aimed to exam the performance of innovative biomarkers for AR positive TNBC in diagnosis and therapies. Four datasets (GSE42568, GSE45827, GSE54002 and GSE76124) were analyzed by bioinformatic methods and the differential expression genes (DEGs) between the AR positive TNBC tissues and normal tissues were firstly identified by limma package and Venn diagrams. Next, Gene Ontologies (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to explore the relationship between these DEGs. Then, the Protein-protein interaction (PPI) network was constructed. CytoHubba and bioinformatic approaches including Molecular Complex Detection (MCODE), Gene Expression Profiling Interactive Analysis (GEPIA), the Kaplan-Meier (KM) plotter and The Human Pro-tein Atlas (THPA) were used to identify the hub genes. Lastly, a miRNA-hub-gene regulatory axis was constructed by use of Target Scan database and ENCORI database. As a result, a total of 390 common DEGs were identified, including 250 up-regulated and 140 down-regulated. GO and KEGG enrichment analysis showed that the up-regulated DEGs were mostly enriched in the cell division, mitotic nuclear division, nucleosome, midbody, protein heterodimerization activity, cadherin binding involved in cell-cell adhesion, systemic lupus erythematosus and alcoholism, while the down-regulated DEGs were mainly enriched in carbohydrate metabolic process, extracellular space, extracellular region, zinc ion binding and microRNAs in cancer. Then, 13 hub genes (CCNB2, FOXM1, HMMR, MAD2L1, RRM2, TPX2, TYMS, CEP55, AURKA, CCNB1, CDK1, TOP2A, PBK) were selected. The survival analysis revealed that only CCNB1 was associated with significantly poor survival (P <0.05) in TNBC patients. Finally, we found that hsa-miR-3163 took part in the regulation of CCNB1 and constructed a potential hsa-miR-3163-CCNB1 regulatory axis. The results of current study suggest that CCNB1 and hsa-miR-3163 may serve as highly potential prognostic markers and therapeutic targets for AR positive TNBC. Our findings may make contributions to the diagnosis and therapies of AR positive TNBC.


Biomarkers, Tumor/metabolism , Cyclin B1/metabolism , MicroRNAs/metabolism , Receptors, Androgen/metabolism , Triple Negative Breast Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Computational Biology , Cyclin B1/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Receptors, Androgen/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
3.
Front Immunol ; 12: 736030, 2021.
Article En | MEDLINE | ID: mdl-34659224

Background: As a kind of small membrane vesicles, exosomes are secreted by most cell types from multivesicular endosomes, including tumor cells. The relationship between exosomes and immune response plays a vital role in the occurrence and development of tumors. Nevertheless, the interaction between exosomes and the microenvironment of tumors remains unclear. Therefore, we set out to study the influence of exosomes on the triple-negative breast cancer (TNBC) microenvironment. Method: One hundred twenty-one exosome-related genes were downloaded from ExoBCD database, and IVL, CXCL13, and AP2S1 were final selected because of the association with TNBC prognosis. Based on the sum of the expression levels of these three genes, provided by The Cancer Genome Atlas (TCGA), and the regression coefficients, an exosome risk score model was established. With the median risk score value, the patients in the two databases were divided into high- and low-risk groups. R clusterProfiler package was employed to compare the different enrichment ways between the two groups. The ESTIMATE and CIBERSORT methods were employed to analyze ESTIMATE Score and immune cell infiltration. Finally, the correlation between the immune checkpoint-related gene expression levels and exosome-related risk was analyzed. The relationship between selected gene expression and drug sensitivity was also detected. Results: Different risk groups exhibited distinct result of TNBC prognosis, with a higher survival rate in the low-risk group than in the high-risk group. The two groups were enriched by immune response and biological process pathways. A better overall survival (OS) was demonstrated in patients with high scores of immune and ESTIMATE rather than ones with low scores. Subsequently, we found that CD4+-activated memory T cells and M1 macrophages were both upregulated in the low-risk group, whereas M2 macrophages and activated mast cell were downregulated in the low-risk group in patients from the TCGA and GEO databases, respectively. Eventually, four genes previously proposed to be targets of immune checkpoint inhibitors were evaluated, resulting in the expression levels of CD274, CTLA4, LAG3, and TIM3 being higher in the low-risk group than high-risk group. Conclusion: The results of our study suggest that exosome-related risk model was related to the prognosis and ratio of immune cell infiltration in patients with TNBC. This discovery may make contributions to improve immunotherapy for TNBC.


Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Exosomes/genetics , Models, Genetic , Tumor Microenvironment/genetics , Antigens, CD/genetics , B7-H1 Antigen/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , CD4-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/genetics , Clinical Decision-Making , Databases, Genetic , Drug Resistance, Neoplasm/genetics , Exosomes/immunology , Female , Gene Expression Profiling , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Memory T Cells/immunology , Predictive Value of Tests , Prognosis , Reproducibility of Results , Risk Assessment , Risk Factors , Transcriptome , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Lymphocyte Activation Gene 3 Protein
4.
Med Sci Monit ; 26: e922217, 2020 Jun 27.
Article En | MEDLINE | ID: mdl-32591494

BACKGROUND Rab7 belongs to the Ras oncogene family. Many studies have shown that its dysfunction is associated with many types of malignant tumors, but its effect on the pathogenesis of gastric cancer (GC) is still unknown. Therefore, we investigated the effect and mechanism of Rab7 in GC. MATERIAL AND METHODS The expression of Rab7 in GC and adjacent tissues was detected by immunohistochemistry, Western blot analysis, and qRT-PCR. The relationship of Rab7 with clinicopathological parameters and prognosis was analyzed. The expressions of Rab7, PI3K, and AKT in GC cells were assessed by Western blot. Overexpressed and silenced GC cell lines were constructed and AGS cells were treated with LY294002. The proliferation capacity of GC cells was detected by CCK8 assay, cell cycle changes were detected by flow cytometry, and the invasion and migration abilities of GC cells were assessed by transwell assay. RESULTS The expression of Rab7 was upregulated in the samples and cells, and was positively correlated with lymph node metastasis but negatively correlated with histological differentiation and clinical prognosis. In cell function experiments, overexpression of Rab7 induced the transition from S phase to G2 phase and promoted the proliferation, invasion, and migration of GC cells. Our assessment of the molecular mechanism showed that Rab7 promoted the phosphorylation of PI3K and AKT in GC cells. Incubation with the PI3K inhibitor Ly294002 impaired the enhanced effect of Rab7 overexpression on proliferation, migration, and invasion abilities of GC cells. These results show that the Rab7 affects GC cell progression by modulating the PI3K/AKT pathway. CONCLUSIONS Rab7 could be a prognostic biomarker and therapeutic target of the PI3K/AKT pathway in GC.


Carcinoma/genetics , Cell Proliferation/genetics , Stomach Neoplasms/genetics , rab GTP-Binding Proteins/genetics , Carcinoma/metabolism , Carcinoma/pathology , Cell Cycle , Cell Line, Tumor , Cell Movement/genetics , Female , G2 Phase/genetics , Humans , Lymph Nodes/pathology , Male , Middle Aged , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , S Phase/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Up-Regulation , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
5.
J Cell Mol Med ; 24(10): 5842-5849, 2020 05.
Article En | MEDLINE | ID: mdl-32285560

Metabolic reprogramming has become a hot topic recently in the regulation of tumour biology. Although hundreds of altered metabolic genes have been reported to be associated with tumour development and progression, the important prognostic role of these metabolic genes remains unknown. We downloaded messenger RNA expression profiles and clinicopathological data from The Cancer Genome Atlas and the Gene Expression Omnibus database to uncover the prognostic role of these metabolic genes. Univariate Cox regression analysis and lasso Cox regression model were utilized in this study to screen prognostic associated metabolic genes. Patients with high-risk demonstrated significantly poorer survival outcomes than patients with low-risk in the TCGA database. Also, patients with high-risk still showed significantly poorer survival outcomes than patients with low-risk in the GEO database. What is more, gene set enrichment analyses were performed in this study to uncover significantly enriched GO terms and pathways in order to help identify potential underlying mechanisms. Our study identified some survival-related metabolic genes for rectal cancer prognosis prediction. These genes might play essential roles in the regulation of metabolic microenvironment and in providing significant potential biomarkers in metabolic treatment.


Genes, Neoplasm , Rectal Neoplasms/genetics , Rectal Neoplasms/metabolism , Databases, Genetic , Down-Regulation/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Multivariate Analysis , Prognosis , Proportional Hazards Models , Reproducibility of Results , Risk Factors , Survival Analysis , Up-Regulation/genetics
6.
PeerJ ; 7: e7526, 2019.
Article En | MEDLINE | ID: mdl-31497396

The seasonal dynamics of microbial diversity within the rhizosphere of Ulmus pumila L. var. sabulosa in the hinterland of the Otindag Sandy Land of China were investigated using high-throughput sequencing of bacterial 16S rRNA genes and fungal ITS region sequences. A significant level of bacterial and fungal diversity was observed overall, with detection of 7,676 bacterial Operational Taxonomic Units (OTUs) belonging to 40 bacteria phyla and 3,582 fungal OTUs belonging to six phyla. Proteobacteria, Actinobacteria, and Firmicutes were the dominant bacterial phyla among communities, while Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla of fungal communities. Seasonal changes influenced the α-diversity and ß-diversity of bacterial communities within elm rhizospheres more than for fungal communities. Inferred functional analysis of the bacterial communities identified evidence for 41 level two KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology groups, while guild-based analysis of the fungal communities identified eight ecological guilds. Metabolism was the most prevalent bacterial functional group, while saprotrophs prevailed among the identified fungal ecological guilds. Soil moisture and soil nutrient content were important factors that affected the microbial community structures of elm rhizospheres across seasons. The present pilot study provides an important baseline investigation of elm rhizosphere microbial communities.

7.
Biomed Res Int ; 2019: 8010635, 2019.
Article En | MEDLINE | ID: mdl-30915359

ß-Galactosidase (E.C.3.2.1.23) catalyzes the hydrolysis of lactose into glucose and galactose and the synthesis of galacto-oligosaccharides as well. The ß-galactosidases from bacteria, especially lactobacilli, and yeast have neutral pH and are much more likely to be developed as food additives. However, the challenges of cumbersome purification, product toxicity, and low yield in protein production have limited the commercialization of many excellent candidates. In this study, we identified a ß-galactosidase gene (bg42-106) in Bifidobacterium animalis ACCC05790 and expressed the gene product in Escherichia coli BL21(DE3) and Pichia pastoris GS115, respectively. The recombinant bG42-106 purified from E. coli cells was found to be optimally active at pH 6.0 and 60°C and had excellent stability over a wide pH range (5.0-8.0) and at high temperature (60°C). The specific activity of bG42-106 reached up to 2351 U/mg under optimal conditions. The galacto-oligosaccharide yield was 24.45 g/L after incubation with bG42-106 at 60°C for 2 h. When recombinant bG42-106 was expressed in Pichia pastoris GS115, it was found in the culture medium but only at a concentration of 1.73 U/ml. To increase its production, three strategies were employed, including codon optimization, disulfide formation, and fusion with a Cherry tag, with Cherry-tag fusion being most effective. The culture medium of P. pastoris that expressed Cherry-tagged bG42-106 contained 24.4 U/mL of ß-galactosidase activity, which is 14-fold greater than that produced by culture of P. pastoris harboring wild-type bG42-106.


Bacterial Proteins , Bifidobacterium animalis/enzymology , Bifidobacterium animalis/genetics , Pichia , Recombinant Fusion Proteins , beta-Galactosidase , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Pichia/genetics , Pichia/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , beta-Galactosidase/biosynthesis , beta-Galactosidase/genetics , beta-Galactosidase/isolation & purification
...