Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
BJU Int ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967108

RESUMEN

The mitochondrion serves as a critical intracellular organelle, engaging in essential roles in the regulation of energy production, oxidative stress management, calcium homeostasis, and apoptosis. One such disease that has been particularly associated with these functions is kidney stone disease (KSD), specifically calcium oxalate (CaOx). It is underpinned by oxidative stress and tissue inflammation. Recent studies have shed light on the vital involvement of mitochondrial dysfunction, the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) inflammasome, endoplasmic reticulum stress and subsequent cell death in CaOx crystal retention and aggregation. These processes are pivotal in the pathogenesis of kidney stone formation. This review focuses on the pivotal roles of mitochondria in renal cell functions and provides an overview of the intricate interconnectedness between mitochondrial dysfunction and NLRP3 inflammasome activation in the context of KSD. It is essential to recognise the utmost significance of gaining a comprehensive understanding of the mechanisms that safeguard mitochondrial function and regulate the NLRP3 inflammasome. Such knowledge carries significant scientific implications and opens up promising avenues for the development of innovative strategies to prevent the formation of kidney stones.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38596203

RESUMEN

Introduction: Chronic obstructive pulmonary disease (COPD), an incurable chronic respiratory disease, has become a major public health problem. The relationship between the composition of intestinal microbiota and the important clinical factors affecting COPD remains unclear. This study aimed to identify specific intestinal microbiota with high clinical diagnostic value for COPD. Methods: The fecal microbiota of patients with COPD and healthy individuals were analyzed by 16S rDNA sequencing. Random forest classification was performed to analyze the different intestinal microbiota. Spearman correlation was conducted to analyze the correlation between different intestinal microbiota and clinical characteristics. A microbiota-disease network diagram was constructed using the gut MDisorder database to identify the possible pathogenesis of intestinal microorganisms affecting COPD, screen for potential treatment, and guide future research. Results: No significant difference in biodiversity was shown between the two groups but significant differences in microbial community structure. Fifteen genera of bacteria with large abundance differences were identified, including Bacteroides, Prevotella, Lachnospira, and Parabacteroides. Among them, the relative abundance of Lachnospira and Coprococcus was negatively related to the smoking index and positively related to lung function results. By contrast, the relative abundance of Parabacteroides was positively correlated with the smoking index and negatively correlated with lung function findings. Random forest classification showed that Lachnospira was the genus most capable of distinguishing between patients with COPD and healthy individuals suggesting it may be a potential biomarker of COPD. A Lachnospira disease network diagram suggested that Lachnospira decreased in some diseases, such as asthma, diabetes mellitus, and coronavirus disease 2019 (COVID-19), and increased in other diseases, such as irritable bowel syndrome, hypertension, and bovine lichen. Conclusion: The dominant intestinal microbiota with significant differences is related to the clinical characteristics of COPD, and the Lachnospira has the potential value to identify COPD.


Asunto(s)
Asma , Microbioma Gastrointestinal , Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Bovinos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Heces/microbiología
3.
J Med Food ; 27(4): 287-300, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442325

RESUMEN

Secondary osteoporosis is frequently due to the use of high-dose glucocorticoids (GCs). The existing strategy for managing glucocorticoid-induced osteoporosis (GIOP) is considered insufficient and remains in a state of ongoing evolution. Therefore, it is crucial to develop more precise and effective agents for the treatment of GIOP. The constituents of Reynoutria multiflora (Thunb.) Moldenke, specifically Polygonum multiflorum (PM) Thunb, have previously shown promise in mitigating osteopenia. This study aimed to investigate the therapeutic effects of an ethanolic PM extract (PMR30) against GIOP in male rats. Prednisone (6 mg/kg/day, GC) was continuously administered to rats to induce GIOP, and they were subjected to treatment with or without ethanolic PMR30 for a duration of 120 days. Serum was collected for biochemical marker analysis. Bone histomorphometric, histological, and TUNEL analyses were performed on tibia samples. The protein expressions of LC3, Agt5, and Beclin 1 in the femur underwent examination through western blotting. Prolonged and excessive GC treatment significantly impeded bone formation, concomitant with reduced bone mass and body weight. It also suppressed OCN and OPG/RANKL in serum, and decreased Beclin 1 and LC3 in bone. Simultaneously, there was an elevation in bone resorption markers and apoptosis. Treatments with both high dose and low dose of PMR30 alleviated GIOP, stimulated bone formation, and upregulated OCN and OPG/RANKL, while suppressing TRACP-5b, CTX-I, and apoptosis. The impact of PMR30 possibly involves the enhancement of autophagy proteins (LC3, Agt5, and Beclin 1) and the inhibition of apoptosis within the bone. PMR30 holds promise as a prospective therapeutic agent for preventing and treating GIOP.


Asunto(s)
Fallopia multiflora , Osteoporosis , Ratas , Masculino , Animales , Glucocorticoides/efectos adversos , Reynoutria , Beclina-1 , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 184-198, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38282476

RESUMEN

Cellular senescence is an important factor leading to pulmonary fibrosis. Deficiency of 8-oxoguanine DNA glycosylase (OGG1) in mice leads to alleviation of bleomycin (BLM)-induced mouse pulmonary fibrosis, and inhibition of the OGG1 enzyme reduces the epithelial mesenchymal transition (EMT) in lung cells. In the present study, we find decreased expression of OGG1 in aged mice and BLM-induced cell senescence. In addition, a decrease in OGG1 expression results in cell senescence, such as increases in the percentage of SA-ß-gal-positive cells, and in the p21 and p-H2AX protein levels in response to BLM in lung cells. Furthermore, OGG1 promotes cell transformation in A549 cells in the presence of BLM. We also find that OGG1 siRNA impedes cell cycle progression and inhibits the levels of telomerase reverse transcriptase (TERT) and LaminB1 in BLM-treated lung cells. The increase in OGG1 expression results in the opposite phenomenon. The mRNA levels of senescence-associated secretory phenotype (SASP) components, including IL-1α, IL-1ß, IL-6, IL-8, CXCL1/CXCL2, and MMP-3, in the absence of OGG1 are obviously increased in A549 cells treated with BLM. Interestingly, we demonstrate that OGG1 binds to p53 to inhibit the activation of p53 and that silencing of p53 reverses the inhibition of OGG1 on senescence in lung cells. Additionally, the augmented cell senescence is shown in vivo in OGG1-deficient mice. Overall, we provide direct evidence in vivo and in vitro that OGG1 plays an important role in protecting tissue cells against aging associated with the p53 pathway.


Asunto(s)
ADN Glicosilasas , Guanina/análogos & derivados , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pulmón/metabolismo , Senescencia Celular , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo
5.
Int Immunopharmacol ; 126: 111148, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37977070

RESUMEN

One of abundant DNA lesions induced by reactive oxygen species is 8-oxoguanine (8-oxoG), which compromises genetic instability. 8-oxoG is recognized by the DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) that not only participates in base excision repair but also involves in transcriptional regulation.OGG1 has an important role inIdiopathic Pulmonary Fibrosis (IPF) processing and targeting fibroblasts is a major strategy for the treatment of pulmonary fibrosis, but whether OGG1 activate fibroblast is not clear. In this study, we show that OGG1 expression level is increased at the fibroblast activation stage in mouse lungs induced by bleomycin (BLM) treatment. OGG1 promoted the expression level of fibroblast activation markers (CTGF, fibronectin, and collagen 1) in a pro-fibrotic gene transcriptional regulation pathway via interacting with Snail1, which dependent on 8-oxoG recognition. Global inhibition of OGG1 at the middle stage of lung fibrosis also relieved BLM-induced lung fibrosis in mice. Our results suggest that OGG1 is a target for inhibiting fibroblast activation and a potential therapeutic target for IPF.


Asunto(s)
ADN Glicosilasas , Fibrosis Pulmonar , Animales , Ratones , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Fibrosis Pulmonar/inducido químicamente
6.
Sci Total Environ ; 896: 165308, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37414186

RESUMEN

Microplastics (MPs) have been recognized as prominent anthropogenic pollutants that inflict significant harm to marine ecosystems. Various approaches have been proposed to mitigate the risks posed by MPs. Gaining an understanding of the morphology of plastic particles can provide valuable insights into the source and their interaction with marine organisms, which can assist the development of response measures. In this study, we present an automated technique for identifying MPs through segmentation of MPs in microscopic images using a deep convolutional neural network (DCNN) based on a shape classification nomenclature framework. We used MP images from diverse samples to train a Mask Region Convolutional Neural Network (Mask R-CNN) based model for classification. Erosion and dilation operations were added to the model to improve segmentation results. On the testing dataset, the mean F1-score (F1) of segmentation and shape classification was 0.7601 and 0.617, respectively. These results demonstrate the potential of proposed method for the automatic segmentation and shape classification of MPs. Furthermore, by adopting a specific nomenclature, our approach represents a practical step towards the global standardization of MPs categorization criteria. This work also identifies future research directions to improve accuracy and further explore the possibilities of using DCNN for MPs identification.

8.
Phytomedicine ; 109: 154584, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610114

RESUMEN

BACKGROUND: Ginsenosides, phenolic compounds, and polysaccharides are the bioactive constituents of Panax ginseng Meyer. Compound K (CK) is a secondary ginsenoside with better bioavailability. It is also a promising anticancer agent. PURPOSE: We aimed to evaluate the effect of CK on prostate cancer (PCa) and its potential mechanisms. STUDY DESIGN: The proliferation, migration and cell cycle of PCa cells after CK treatment were assessed in various PCa cell lines. Docetaxel was used as a positive control drug. Unlike other published studies, the potential mechanisms of CK (50 µM) were investigated by an unbiased global transcriptome sequencing in the current study. METHODS: Key CK related genes (CRGs) with prognostic significance were identified and verified by bioinformatic methods using data from the TCGA dataset and GSE21034 dataset. The role of CDK1 in the effect of CK treatment on PCa cells was investigated by overexpression of CDK1. RESULTS: CK inhibited the proliferation and migration of PCa cells at concentrations (less than 25 µM) without obvious cytotoxicity. Five key CRGs with prognostic significance were identified, including CCNA2, CCNB2, CCNE2, CDK1, and PKMYT1, which are involved in cell cycle pathways. CK inhibited the expression of these 5 genes and the cell cycle of PCa cells. According to the results of bioinformatic analysis, the expression of the five key CRGs was strongly associated with poor prognosis and advanced pathological stage and grade of PCa. In addition, CK could restore androgen sensitivity in castration-resistant PCa cells, probably by inhibiting the expression of CDK1. After CDK1 overexpression, the inhibition of proliferation and migration of PCa cells by CK was decreased. The inhibition on the phosphorylation of AKT by CK was also reduced. CONCLUSION: CK can inhibit PCa cells, and the mechanisms may be associated with the inhibition of cell cycle pathways through CDK1. CK is also a potential clinical anticancer agent for treating PCa.


Asunto(s)
Antineoplásicos , Ginsenósidos , Neoplasias de la Próstata , Masculino , Humanos , Ginsenósidos/farmacología , Antineoplásicos/farmacología , Ciclo Celular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Proliferación Celular , Línea Celular Tumoral , Proteínas de la Membrana , Proteínas Tirosina Quinasas/farmacología , Proteínas Serina-Treonina Quinasas
9.
Comb Chem High Throughput Screen ; 26(1): 241-245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35579163

RESUMEN

BACKGROUND: Glanders is a rare zoonotic disease caused by Burkholderia mallei. Humans can be infected by B. mallei, which causes cutaneous lymphadenitis and pneumonia, leading to sepsis and death in severe cases. CASE PRESENTATION: We report a case of a 60-year-old male who was diagnosed with glanders. The patient who had a history of diabetes presented with cough, expectoration, and fever. Computed tomography (CT) imaging showed B. mallei infection in the right upper lobe of the lung with mediastinal lymph node involvement and the lingual segment of the left lung. Moreover, the posterior basal segment of the lower lobe of both lungs had inflammation. Subsequently, B. mallei infection was confirmed by lymph node biopsy and bronchoalveolar lavage multiplex PCR-based targeted gene sequencing. After meropenem treatment, the patient was discharged, and CT imaging showed reduced absorption of pulmonary inflammatory lesions. CONCLUSIONS: Glanders is a rare disease that can cause skin infection, lymphadenitis, and pneumonia, and in severe cases, it can be life-threatening. The diagnosis of this disease mainly relies on microbiological culture and pathological biopsy. Diagnosis is also facilitated by multiplex PCRbased targeted gene sequencing. Glanders is treated with cephalosporins, carbapenems, and other sensitive antibiotics.


Asunto(s)
Burkholderia mallei , Muermo , Linfadenitis , Neumonía , Caballos , Animales , Masculino , Humanos , Persona de Mediana Edad , Burkholderia mallei/genética , Muermo/diagnóstico , Muermo/tratamiento farmacológico , Muermo/microbiología , Pulmón/microbiología , Pulmón/patología , Linfadenitis/patología
11.
Amino Acids ; 54(7): 1069-1081, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35304640

RESUMEN

Sepsis-induced fulminant hepatitis (FH) is a fatal syndrome that has a worse prognosis in clinical practice. Hence, seeking effective agents for sepsis-induced FH treatment is urgently needed. Fibroblast growth factors (FGFs) are vital for tissue homeostasis and damage repair in various organs including the liver. Our study aims to investigate the protective effects and potential mechanisms of FGF9 on lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced FH in mice. We found that pre-treatment with FGF9 exhibited remarkable hepaprotective effects on liver damage caused by LPS/D-Gal, as manifested by the concomitant decrease in mortality and serum aminotransferase activities, and the attenuation of hepatocellular apoptosis and hepatic histopathological abnormalities in LPS/D-Gal-intoxicated mice. We further found that FGF9 alleviated the infiltration of neutrophils into the liver, and decreased the serum levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in LPS/D-Gal-challenged mice. These effects can be explained at least in part by the inhibition of NF-κB signaling pathway. Meanwhile, FGF9 enhanced the antioxidative defense system in mice livers by upregulating the expression of NRF-2-related antioxidative enzymes, including glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H: quinone oxidoreductase 1 (NQO-1), and heme oxygenase-1 (HO-1). These data indicate that FGF9 represents a promising therapeutic drug for ameliorating sepsis-induced FH via its anti-apoptotic and anti-inflammatory capacities.


Asunto(s)
Necrosis Hepática Masiva , Sepsis , Animales , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/farmacología , Galactosamina/metabolismo , Galactosamina/farmacología , Lipopolisacáridos/farmacología , Hígado/metabolismo , Necrosis Hepática Masiva/metabolismo , Necrosis Hepática Masiva/patología , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
13.
J Endourol ; 36(3): 292-297, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34569289

RESUMEN

Purpose: To assess the preoperative risk factors for postoperative urosepsis after mini-percutaneous nephrolithotomy (mPCNL) in patients with large kidney stones. Methods: Records of 171 patients with large (≥30 mm) kidney stones who underwent mPCNL from December 2013 to October 2019 were reviewed. Demographic data of patients, preoperative urine analysis, urine culture, and routine blood tests and abdominal computerized cosmography data were collected and analyzed. A predictive nomogram model was established based on the results of logistic regression. Results: Twenty-nine patients (17%) developed postoperative urosepsis in this study. Univariate analysis demonstrated that preoperative urine leukocytes (p < 0.001), urine nitrite (p < 0.001), stones in adjacent calices on the coronal plane (p < 0.001), the maximum cross-sectional area of stones (p < 0.001), the diameter of hydronephrosis (p = 0.010), and number of stones (p = 0.044) were associated with postoperative urosepsis after mPCNL in patients with large kidney stones. And preoperative urine leukocytes ≥450/µL (p = 0.002) was the only independent risk factor for postoperative urosepsis in multivariate logistic regression analysis. Based on the results of multivariate regression, a nomogram model was established for the prediction of postoperative urosepsis with ideal discrimination (area under receiver operating characteristic curve was 0.867). Conclusion: Patients with certain preoperative characteristics, including higher urine leukocytes, positive urine nitrite, stones in adjacent calices on the coronal plane, larger maximum cross-sectional area of stones, larger diameter of hydronephrosis, and larger number of stones, who received mPCNL may have a higher risk of postoperative urosepsis. A predictive model can help urologists identify patients who may develop postoperative urosepsis with high probability.


Asunto(s)
Hidronefrosis , Cálculos Renales , Nefrolitotomía Percutánea , Sepsis , Infecciones Urinarias , Femenino , Humanos , Hidronefrosis/etiología , Cálculos Renales/complicaciones , Masculino , Nefrolitotomía Percutánea/efectos adversos , Nitritos , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de Riesgo , Sepsis/etiología , Infecciones Urinarias/complicaciones
14.
BMC Pulm Med ; 21(1): 347, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742261

RESUMEN

BACKGROUND: We have reported that heparin-binding epidermal growth factor (HB-EGF) is increased in patients with chronic obstructive pulmonary disease (COPD) and associated with collagen deposition, but the mechanisms remain unclear. In the present study, we aimed to investigated the inflammatory cytokines secreted by bronchial epithelial cells following exposure to HB-EGF that promoted proliferation and migration of human lung fibroblast. METHODS: HB-EGF-induced inflammatory cytokines were assayed in two airway epithelial cells (primary human bronchial epithelial cells [HBECs] and BEAS-2B cells). Moreover, the culture supernatants derived from HB-EGF-treated HBECs and BEAS-2B cells were added to human primary lung fibroblasts. The effect of culture supernatants on proliferation and migration of fibroblasts was assessed. RESULTS: IL-8 expression was significantly increased in bronchial epithelial cells treated with HB-EGF, which was at least partially dependent on NF-kB pathways activation. HB-EGF-induced IL-8 was found to further promote lung fibroblasts proliferation and migration, and the effects were attenuated after neutralizing IL-8. CONCLUSIONS: These findings suggest that HB-EGF may be involved in the pathology of airway fibrosis by induction of IL-8 from airway epithelium, subsequently causing lung fibroblasts proliferation and migration. Thus, inhibition of HBEGF and/or IL-8 production could prevent the development of airway fibrosis by modulating fibroblast activation.


Asunto(s)
Epitelio/metabolismo , Fibroblastos/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Interleucina-8/metabolismo , Pulmón/metabolismo , Técnicas de Cultivo de Célula , Proliferación Celular , Fibroblastos/patología , Fibrosis/patología , Humanos , Pulmón/fisiopatología
15.
Mar Pollut Bull ; 173(Pt A): 112983, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34600167

RESUMEN

In this study, we determined the spatial variations and potential risks of heavy metals in the sediments of Yueqing Bay by assessing the relationship between metal concentrations and sediment physiochemical factors. We found higher sediment metal concentrations in the inner bay than in the central and outer bay, particularly with respect to Hg, Cu, and Pb concentrations. According to the sediment quality guidelines, the heavy metals had a toxicity incidence probability of 21%. Assessments of heavy metal contamination using the geo-accumulation index and potential ecological risk index suggest that Cr, As, Pb, and Hg likely pose low ecological risks, while Cu, Zn, and Cd were identified as priority pollutants and may pose moderate ecological risks to the ecosystem. Multivariate statistical analysis inferred the high influence of sediment texture, total organic carbon (TOC), and petroleum hydrocarbons (PHCs) on the distribution and fate of metals in sediment.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Bahías , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
16.
Mol Ther Nucleic Acids ; 24: 140-153, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767911

RESUMEN

CD46 is well known to be involved in diverse biological processes. Although several splice variants of CD46 have been identified, little is known about the contribution of alternative splicing to its tumorigenic functions. In this study, we found that exclusion of CD46 exon 13 is significantly increased in bladder cancer (BCa) samples. In BCa cell lines, enforced expression of CD46-CYT2 (exon 13-skipping isoform) promoted, and CD46-CYT1 (exon 13-containing isoform) attenuated, cell growth, migration, and tumorigenicity in a xenograft model. We also applied interaction proteomics to identify exhaustively the complexes containing the CYT1 or CYT2 domain in EJ-1 cells. 320 proteins were identified that interact with the CYT1 and/or CYT2 domain, and most of them are new interactors. Using an internal ribosome entry site (IRES)-dependent reporter system, we established that CD46 could regulate mRNA translation through an interaction with the translation machinery. We also identified heterogeneous nuclear ribonucleoprotein (hnRNP)A1 as a novel CYT2 binding partner, and this interaction facilitates the interaction of hnRNPA1 with IRES RNA to promote IRES-dependent translation of HIF1a and c-Myc. Strikingly, the splicing factor SRSF1 is highly correlated with CD46 exon 13 exclusion in clinical BCa samples. Taken together, our findings contribute to understanding the role of CD46 in BCa development.

17.
Cancer Commun (Lond) ; 41(4): 316-332, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33591636

RESUMEN

BACKGROUND: Increased hypoxia-inducible factor 2α (HIF2α) activation is a common event in clear cell renal cell carcinoma (ccRCC) progression. However, the function and underlying mechanism of HIF2α in ccRCC remains uninvestigated. We conducted this study to access the potential link between junction plakoglobin (JUP) and HIF2α in ccRCC. METHODS: Affinity purification and mass spectrometry (AP-MS) screening, glutathione-s-transferase (GST) pull-down and co-immunoprecipitation (Co-IP) assays were performed to detect the interacting proteins of HIF2α. Quantitative PCR (qPCR) and Western blotting were used to detect the expression of JUP in human ccRCC samples. Luciferase reporter assays, chromatin immunoprecipitation (ChIP), cycloheximide chase assays, and ubiquitination assays were conducted to explore the regulation of JUP on the activity of HIF2α. Cell Counting Kit-8 (CCK-8) assays, colony formation assays, transwell assays, and xenograft tumor assays were performed to investigate the effect of JUP knockdown or overexpression on the tumorigenicity of renal cancer cells. RESULTS: We identified JUP as a novel HIF2α-binding partner and revealed an important role of JUP in recruiting von Hippel-Lindau (VHL) and histone deacetylases 1/2 (HDAC1/2) to HIF2α to regulate its stability and transactivation. JUP knockdown promoted and overexpression suppressed the tumorigenicity of renal cell carcinoma in vitro and in vivo. Importantly, the low expression of JUP was found in clinical ccRCC samples and correlated with enhanced hypoxia scores and poor treatment outcomes. CONCLUSION: Taken together, these data support a role of JUP in modulating HIF2α signaling during ccRCC progression and identify JUP as a potential therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/genética , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , gamma Catenina
18.
FASEB J ; 34(10): 13461-13473, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32808374

RESUMEN

The DNA repair enzyme 8-oxoguanine DNA glycosylase-1 (OGG1) is involved in early embryonic development, as well as in multiple conditions, including cardiac fibrosis, diabetes, and neurodegenerative diseases. But, function of OGG1 in pulmonary fibrosis was not entirely clear. In this study, we identified a novel function of OGG1 in the cell transformation process in pulmonary fibrosis. We demonstrated that OGG1 and Smad7 co-localize and interact in A549 cells. Bleomycin-induced pulmonary fibrosis was established in wild-type (WT) and Ogg1-/- mice. Upon treatment with transforming growth factor (TGF)-ß1, increased OGG1 expression was observed in WT mice with pulmonary fibrosis as well as in A549 cells, MRC-5 cells, and primary rat type II alveolar epithelial cells. The increased expression of OGG1 promoted cell migration, while OGG1 depletion decreased migration ability. Expression of the transformation-associated markers vimentin and alpha-smooth muscle actin were also affected by OGG1. We also observed that OGG1 promoted TGF-ß1-induced cell transformation and activated Smad2/3 by interacting with Smad7. The interaction between OGG1 and the TGF-ß/Smad axis modulates the cell transformation process in lung epithelial cells and fibroblasts. Moreover, we demonstrated that Ogg1 deficiency relieved pulmonary fibrosis in bleomycin-treated mice. Ogg1 knockout decreased the bleomycin-induced expression of Smad7 and phosphorylation of Smad2/3 in mice. These findings suggest that OGG1 has multiple biological functions in the pathogenesis of pulmonary fibrosis.


Asunto(s)
ADN Glicosilasas/metabolismo , Fibrosis Pulmonar/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Proteína smad7/metabolismo , Células A549 , Células Epiteliales Alveolares , Animales , Fibroblastos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Factor de Crecimiento Transformador beta1/metabolismo
19.
Biomed Pharmacother ; 128: 110304, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32497865

RESUMEN

BACKGROUND AND AIMS: Aging-induced bone loss is a multifactorial, age-related, and progressive phenomenon among the general population and may further progress to osteoporosis and increase the risk of fractures. Cycloastragenol (CAG), currently the only compound reported that activates human telomerase, is thought to be able to alleviate or delay the symptoms of aging and chronic diseases. Previous research has suggested that CAG may have the potential to alleviate age-related bone loss. However, to date, no research has specifically focused on this aspect. In this study, we aimed to investigate whether CAG could prevent senile osteoporosis, and further reveal its underlying mechanism. METHODS: CAG treatment was administrated into two bone loss rat models (D-galactose administration and aging) for 20 weeks and 33 weeks, respectively. Serum biomarkers analyses, bone biomechanical tests, micro-computed tomography assessment, and bone histomorphometry analyses were performed on the bone samples collected at the endpoint, to determine whether CAG could prevent or alleviate age-related bone loss. Proteomic analysis was performed to reveal the changes in protein profiles of the bones, and western blot was used to further verify the identity of the key proteins. The viability, osteoblastic differentiation, and mineralization of MC3T3-E1 cells were also evaluated after CAG treatment in vitro. RESULTS: The results suggest that CAG treatment improves bone formation, reduces osteoclast number, alleviates the degradation of bone microstructure, and enhances bone biomechanical properties in both d-galactose- and aging-induced bone loss models. CAG treatment promotes viability, osteoblastic differentiation, and mineralization in MC3T3-E1 cells. Proteomic and western blot analyses revealed that CAG treatment increases osteoactivin (OA) expression to alleviate bone loss. CONCLUSION: The results revealed that CAG alleviates age-related bone loss and improves bone microstructure and biomechanical properties. This may due to CAG-induced increase in OA expression. In addition, the results support preclinical investigations of CAG as a potential therapeutic medicine for the treatment of senile osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Remodelación Ósea/efectos de los fármacos , Fémur/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis/prevención & control , Sapogeninas/farmacología , Células 3T3 , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Fémur/metabolismo , Fémur/patología , Galactosa , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Osteoporosis/patología , Ratas Sprague-Dawley , Regulación hacia Arriba
20.
J Exp Clin Cancer Res ; 39(1): 116, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32560659

RESUMEN

BACKGROUND: Aberrant alternative splicing events play critical roles in carcinogenesis and progression of many cancers, while sparse studies regarding to alternative splicing are available for clear cell renal cell carcinoma (ccRCC). We identified that alternative splicing of coiled-coil domain containing 50 (CCDC50) was dysregulated in ccRCC, whereas the clinical significance of this splicing event and its splicing regulation mechanisms were still elusive. METHODS: Bioinformatic algorithm was utilized to identify significant exon skipping events in ccRCC via exon sequencing data from The Cancer Genome Atlas. Semi-quantitative real-time polymerase chain reaction and western blot were used to validate the aberrant expression of different transcripts in renal cancer tissues, cell lines and corresponding noncancerous controls. Short hairpin RNA targeting CCDC50 and overexpressing plasmids for each transcript were introduced into ccRCC cell lines, followed by a series of in vitro and in vivo functional experiments. Moreover, a panel of splicing factors were identified and their roles on splicing regulation of CCDC50 precursor mRNA (pre-mRNA) were studied. Furthermore, RNAseq data were analyzed to elucidate downstream molecules of CCDC50. Two-way analysis of variance and unpaired Student t test were used in statistical analysis. RESULTS: Pre-mRNA of CCDC50 generated two transcripts, full-length transcript (CCDC50-FL) and truncated transcript (CCDC50-S) with exon 6 skipped. CCDC50-S was overexpressed in ccRCC tissues and cell lines compared to noncancerous counterparts, but CCDC50-FL was only detected in noncancerous tissues and normal renal epithelial cells. Higher percent spliced-in index was associated with better survival in ccRCC patients. In vitro and in vivo functional experiments indicated that CCDC50-S transcript promoted the proliferation, migration, invasion and tumorigenesis of ccRCC, while CCDC50-FL exerted opposite tumor suppressive functions. Besides, we identified that heterogeneous nuclear ribonucleoprotein A1 (HnRNP A1) could promote the skipping of exon 6, which resulted in higher portion of CCDC50-S and oncogenic transformation. Moreover, zinc finger protein 395 (ZNF395) was identified as a downstream protein of CCDC50-S, and the interaction initiated oncogenic pathways which were involved in ccRCC progression. CONCLUSIONS: Aberrant alternative splicing of CCDC50 is regulated by HnRNP A1 in ccRCC. This splicing event contributes to cancer progression through the downstream pathway involving ZNF395.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/patología , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Renales/patología , Factores de Transcripción/metabolismo , Empalme Alternativo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Ribonucleoproteína Nuclear Heterogénea A1/genética , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Ratones , Pronóstico , Empalme del ARN , Tasa de Supervivencia , Factores de Transcripción/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...