Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Meat Sci ; 217: 109595, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39004037

RESUMEN

The purpose of the present study was to investigate the mechanism of gel deterioration of myofibrillar proteins (MP) gels induced by high-temperature treatments based on the protein aggregation and conformation. The results showed that the gel strength and water holding capacity of MP obviously increased and then decreased as the temperature increased, reaching the maximum value at 80 °C (P < 0.05). The microstructure analysis revealed that appropriate temperature (80 °C) contributed to the formation of a more homogeneous, denser, and smoother three-dimensional mesh structure when compared other treatment temperatures, whereas excessive temperature (95 °C) resulted in the formation of heterogeneous and large protein aggregates of MP, decreasing the continuity of gel networks. This was verified by the rheological properties of MP gels. The particle size (D4,3 and D3,2) of MP obviously increased with larger clusters at excessive temperature, and the surface hydrophobicity of MP decreased (P < 0.05), which has been linked to the formation of soluble or insoluble protein aggregates. Tertiary structure and secondary structure results revealed that the proteins had a tendency to be more stretched under higher temperature treatments, which resulted in a decrease in covalent interactions and non-covalent interactions, fostering the over-aggregation of MP. Therefore, our present study indicated that the degradation of MP gels treated at high temperatures was explained by protein aggregation and conformational changes in MP.

2.
Plants (Basel) ; 13(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999675

RESUMEN

The bHLH transcription factor family plays crucial roles in plant growth and development and their responses to adversity. In this study, a highly salt-induced bHLH gene, PagbHLH35 (Potri.018G141600), was identified from Populus alba × P. glandullosa (84K poplar). PagbHLH35 contains a highly conserved bHLH domain within the region of 52-114 amino acids. A subcellular localization result confirmed its nuclear localization. A yeast two-hybrid assay indicated PagbHLH35 lacks transcriptional activation activity, while a yeast one-hybrid assay indicated it could specifically bind to G-box and E-box elements. The expression of PagbHLH35 reached its peak at 12 h and 36 h time points under salt stress in the leaves and roots, respectively. A total of three positive transgenic poplar lines overexpressing PagbHLH35 were generated via Agrobacterium-mediated leaf disk transformation. Under NaCl stress, the transgenic poplars exhibited significantly enhanced morphological and physiological advantages such as higher POD activity, SOD activity, chlorophyll content, and proline content, and lower dehydration rate, MDA content and hydrogen peroxide (H2O2) content, compared to wild-type (WT) plants. In addition, histological staining showed that there was lower ROS accumulation in the transgenic poplars under salt stress. Moreover, the relative expression levels of several antioxidant genes in the transgenic poplars were significantly higher than those in the WT. All the results indicate that PagbHLH35 can improve salt tolerance by enhancing ROS scavenging in transgenic poplars.

3.
Parasitol Int ; 103: 102933, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39048024

RESUMEN

Tick saliva contains a range of critical biological molecules which could inhibit host defenses and guarantee their food supply. Hq023, a novel cDNA sequence, was cloned from a cDNA library constructed from salivary glands of partially-engorged Haemaphysalis qinghaiensis. Hq023 has an open reading frame (ORF) of 408 bp coding a protein containing 135 amino acid residues with a molecular mass of 15 kDa. Database homology showed that Hq023 protein was structurally similar to a natural toxin U33-theraphotoxin-Cg1c from the Chinese tarantula Chilobrachys guangxiensis. A recombinant protein was expressed with the novel cDNA in a prokaryotic system and its analgesic effect was evaluated in mice model. Both tail immersion and hot-plate tests uncovered an antinociceptive activity, while in the acetic acid-induced writhing test this effect was not observed. These results indicated that the novel recombinant protein Hq023 (rHq023) probably possessed a central antinociceptive activity. Finding of the novel protein might pave a new avenue for the development of tick-derived analgesics.

4.
Front Plant Sci ; 15: 1392433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049858

RESUMEN

Poplar is an important greening and timber tree species in China, which has great economic and ecological values. However, the spread of Hyphantria cunea has become increasingly serious in recent years, resulting in huge economic loss of poplar production. Exploring the molecular mechanism of poplar reponse to H. cunea stress has significant implications for future development of new insect-resistant poplar varieties using genetic engineering technology. In this study, a total of 1039 differentially expressed genes (DEGs), 106 differentially expressed proteins (DEPs) and 212 differentially expressed metabolites (DEMs) were screened from Populus simonii × P. nigra leaves under H. cunea stress by transcriptome, proteomics and metabolomics analysis, respectively. GO and KEGG analysis showed that the DEGs and DEPs are associated with endopeptidase inhibitor activity, stress response, α-linolenic acid metabolism, phenylpropanoid biosynthesis and metabolic pathways, cysteine and methionine metabolism pathways and MAKP signaling pathway. Metabolomics analysis showed the most of DEMs were lipids and lipid molecules, and the pathways associated with transcriptome mainly include plant hormone signal transduction, α-linolenic acid metabolic pathway, amino sugar and nucleotide sugar metabolism, and phenylpropanoid biosynthesis. In particular, multi-omics analysis showed that several pathways such as α-linolenic acid metabolic, phenylpropanoid biosynthesis and metabolic pathway and cysteine and methionine metabolic pathway were significantly enriched in the three omics, which may play an important role in the resistance to pests in poplar.

5.
J Am Chem Soc ; 146(27): 18592-18605, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943624

RESUMEN

Ascorbic acid (AA) has been attracting great attention with its emerging potential in T cell-dependent antitumor immunity. However, premature blood clearance and immunologically "cold" tumors severely compromise its immunotherapeutic outcomes. As such, the reversal of the immunosuppressive tumor microenvironment (TME) has been the premise for improving the effectiveness of AA-based immunotherapy, which hinges upon advanced AA delivery and amplified immune-activating strategies. Herein, a novel Escherichia coli (E. coli) outer membrane vesicle (OMV)-red blood cell (RBC) hybrid membrane (ERm)-camouflaged immunomodulatory nanoturret is meticulously designed based on gating of an AA-immobilized metal-organic framework (MOF) onto bortezomib (BTZ)-loaded magnesium-doped mesoporous silica (MMS) nanovehicles, which can realize immune landscape remodeling by chemotherapy-assisted ascorbate-mediated immunotherapy (CAMIT). Once reaching the acidic TME, the acidity-sensitive MOF gatekeeper and MMS core within the nanoturret undergo stepwise degradation, allowing for tumor-selective sequential release of AA and BTZ. The released BTZ can evoke robust immunogenic cell death (ICD), synergistically promote dendritic cell (DC) maturation in combination with OMV, and ultimately increase T cell tumor infiltration together with Mg2+. The army of T cells is further activated by AA, exhibiting remarkable antitumor and antimetastasis performance. Moreover, the CD8-deficient mice model discloses the T cell-dependent immune mechanism of the AA-based CAMIT strategy. In addition to providing a multifunctional biomimetic hybrid nanovehicle, this study is also anticipated to establish a new immunomodulatory fortification strategy based on the multicomponent-driven nanoturret for highly efficient T cell-activation-enhanced synergistic AA immunotherapy.


Asunto(s)
Antineoplásicos , Ácido Ascórbico , Estructuras Metalorgánicas , Linfocitos T , Animales , Ratones , Estructuras Metalorgánicas/química , Ácido Ascórbico/química , Ácido Ascórbico/farmacología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Inmunoterapia , Bortezomib/química , Bortezomib/farmacología , Bortezomib/uso terapéutico , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Escherichia coli/efectos de los fármacos , Dióxido de Silicio/química , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Magnesio/química , Nanopartículas/química , Humanos , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Liberación de Fármacos
6.
ACS Appl Mater Interfaces ; 16(15): 19472-19479, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572784

RESUMEN

Nanomedicine-enhanced immunogenic cell death (ICD) has attracted considerable attention for its great potential in cancer treatment. Even though polyethylene glycol (PEG) is widely recognized as the gold standard for surface modification of nanomedicines, some shortcomings associated with this PEGylation, such as hindered cell endocytosis and accelerated blood clearance phenomenon, have been revealed in recent years. Notably, polysarcosine (PSar) as a highly biocompatible polymer can be finely synthesized by mild ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCAs) and exhibit great potential as an alternative to PEG. In this article, PSar-b-polycamptothecin block copolymers are synthesized by sequential ROP of camptothecin-based NCAs (CPT-NCAs) and Sar-NCAs. Then, the detailed and systematic comparison between PEGylation and PSarylation against the 4T1 tumor model indicates that PSar decoration can facilitate the cell endocytosis, greatly enhancing the ICD effects and antitumor efficacy. Therefore, it is believed that this well-developed PSarylation technique will achieve effective and precise cancer treatment in the near future.


Asunto(s)
Neoplasias , Péptidos , Polietilenglicoles , Sarcosina/análogos & derivados , Humanos , Camptotecina , Muerte Celular Inmunogénica , Polímeros
7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339012

RESUMEN

Phyllostachys nigra has green young culms (S1) and purple black mature culms (S4). Anthocyanins are the principal pigment responsible for color presentation in ornamental plants. We employ a multi-omics approach to investigate the regulatory mechanisms of anthocyanins in Ph. nigra. Firstly, we found that the pigments of the culm of Ph. nigra accumulated only in one to four layers of cells below the epidermis. The levels of total anthocyanins and total flavonoids gradually increased during the process of bamboo culm color formation. Metabolomics analysis indicated that the predominant pigment metabolites observed were petunidin 3-O-glucoside and malvidin O-hexoside, exhibiting a significant increase of up to 9.36-fold and 13.23-fold, respectively, during pigmentation of Ph. nigra culm. Transcriptomics sequencing has revealed that genes involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways were significantly enriched, leading to color formation. A total of 62 differentially expressed structural genes associated with anthocyanin synthesis were identified. Notably, PnANS2, PnUFGT2, PnCHI2, and PnCHS1 showed significant correlations with anthocyanin metabolites. Additionally, certain transcription factors such as PnMYB6 and PnMYB1 showed significant positive or negative correlations with anthocyanins. With the accumulation of sucrose, the expression of PnMYB6 is enhanced, which in turn triggers the expression of anthocyanin biosynthesis genes. Based on these findings, we propose that these key genes primarily regulate the anthocyanin synthesis pathway in the culm and contribute to the accumulation of anthocyanin, ultimately resulting in the purple-black coloration of Ph. nigra.


Asunto(s)
Antocianinas , Transcriptoma , Antocianinas/metabolismo , Metaboloma , Flavonoides/genética , Sacarosa , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Color
8.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373194

RESUMEN

Leaf blight is a fungal disease that mainly affects the growth and development of leaves in plants. To investigate the molecular mechanisms of leaf blight defense in poplar, we performed RNA-Seq and enzyme activity assays on the Populus simonii × Populus nigra leaves inoculated with Alternaria alternate fungus. Through weighted gene co-expression network analysis (WGCNA), we obtained co-expression gene modules significantly associated with SOD and POD activities, containing 183 and 275 genes, respectively. We then constructed a co-expression network of poplar genes related to leaf blight resistance based on weight values. Additionally, we identified hub transcription factors (TFs) and structural genes in the network. The network was dominated by 15 TFs, and four out of them, including ATWRKY75, ANAC062, ATMYB23 and ATEBP, had high connectivity in the network, which might play important functions in leaf blight defense. In addition, GO enrichment analysis revealed a total of 44 structural genes involved in biotic stress, resistance, cell wall and immune-related biological processes in the network. Among them, there were 16 highly linked structural genes in the central part, which may be directly involved in poplar resistance to leaf blight. The study explores key genes associated with leaf blight defense in poplar, which further gains an understanding of the molecular mechanisms of biotic stress response in plants.


Asunto(s)
Populus , Transcriptoma , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , RNA-Seq , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373265

RESUMEN

The strictosidine synthase-like (SSL) gene family is a small plant immune-regulated gene family that plays a critical role in plant resistance to biotic/abiotic stresses. To date, very little has been reported on the SSL gene in plants. In this study, a total of thirteen SSLs genes were identified from poplar, and these were classified into four subgroups based on multiple sequence alignment and phylogenetic tree analysis, and members of the same subgroup were found to have similar gene structures and motifs. The results of the collinearity analysis showed that poplar SSLs had more collinear genes in the woody plants Salix purpurea and Eucalyptus grandis. The promoter analysis revealed that the promoter region of PtrSSLs contains a large number of biotic/abiotic stress response elements. Subsequently, we examined the expression patterns of PtrSSLs following drought, salt, and leaf blight stress, using RT-qPCR to validate the response of PtrSSLs to biotic/abiotic stresses. In addition, the prediction of transcription factor (TF) regulatory networks identified several TFs, such as ATMYB46, ATMYB15, AGL20, STOP1, ATWRKY65, and so on, that may be induced in the expression of PtrSSLs in response to adversity stress. In conclusion, this study provides a solid basis for a functional analysis of the SSL gene family in response to biotic/abiotic stresses in poplar.


Asunto(s)
Proteínas de Plantas , Populus , Proteínas de Plantas/metabolismo , Filogenia , Perfilación de la Expresión Génica/métodos , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Populus/metabolismo
10.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240330

RESUMEN

The NAC transcription factor family is well known to play vital roles in plant development and stress responses. For this research, a salt-inducible NAC gene, PsnNAC090 (Po-tri.016G076100.1), was successfully isolated from Populus simonii × Populus nigra. PsnNAC090 contains the same motifs at the N-terminal end of the highly conserved NAM structural domain. The promoter region of this gene is rich in phytohormone-related and stress response elements. Transient transformation of the gene in the epidermal cells of both tobacco and onion showed that the protein was targeted to the whole cell including the cell membrane, cytoplasm and nucleus. A yeast two-hybrid assay demonstrated that PsnNAC090 has transcriptional activation activity with the activation structural domain located at 167-256aa. A yeast one-hybrid experiment showed that PsnNAC090 protein can bind to ABA-responsive elements (ABREs). The spatial and temporal expression patterns of PsnNAC090 under salt and osmotic stresses indicated that the gene was tissue-specific, with the highest expression level in the roots of Populus simonii × Populus nigra. We successfully obtained a total of six transgenic tobacco lines overexpressing PsnNAC090. The physiological indicators including peroxidase (POD) activity, superoxide dismutase (SOD) activity, chlorophyll content, proline content, malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were measured in three transgenic tobacco lines under NaCl and polyethylene glycol (PEG) 6000 stresses. The findings reveal that PsnNAC090 improves salt and osmotic tolerance by enhancing reactive oxygen species (ROS) scavenging and reducing membrane lipid peroxide content in transgenic tobacco. All the results suggest that the PsnNAC090 gene is a potential candidate gene playing an important role in stress response.


Asunto(s)
Nicotiana , Cloruro de Sodio , Cloruro de Sodio/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Expresión Génica Ectópica , Cloruro de Sodio Dietético/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
11.
Front Plant Sci ; 14: 1160102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200984

RESUMEN

Heat shock transcription factor (HSF) is an important TF that performs a dominant role in plant growth, development, and stress response network. In this study, we identified a total of 30 HSF members from poplar, which are unevenly distributed on 17 chromosomes. The poplar HSF family can be divided into three subfamilies, and the members of the same subfamily share relatively conserved domains and motifs. HSF family members are acidic and hydrophilic proteins that are located in the nucleus and mainly carry out gene expansion through segmental replication. In addition, they have rich collinearity across plant species. Based on RNA-Seq analysis, we explored the expression pattern of PtHSFs under salt stress. Subsequently, we cloned the significantly upregulated PtHSF21 gene and transformed it into Populus simonii × P. nigra. Under salt stress, the transgenic poplar overexpressing PtHSF21 had a better growth state and higher reactive oxygen scavenging ability. A yeast one-hybrid experiment indicated PtHSF21 could improve salt tolerance by specifically binding to the anti-stress cis-acting element HSE. This study comprehensively profiled the fundamental information of poplar HSF family members and their responses to salt stress and specifically verified the biological function of PtHSF21, which provides clues for understanding the molecular mechanism of poplar HSF members in response to salt stress.

12.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108588

RESUMEN

Moso bamboo is capable of both sexual and asexual reproduction during natural growth, resulting in four distinct types of culms: the bamboo shoot-culm, the seedling stem, the leptomorph rhizome, and a long-ignored culm-the outward-rhizome. Sometimes, when the outward rhizomes break through the soil, they continue to grow longitudinally and develop into a new individual. However, the roles of alternative transcription start sites (aTSS) or termination sites (aTTS) as well as alternative splicing (AS) have not been comprehensively studied for their development. To re-annotate the moso bamboo genome and identify genome-wide aTSS, aTTS, and AS in growing culms, we utilized single-molecule long-read sequencing technology. In total, 169,433 non-redundant isoforms and 14,840 new gene loci were identified. Among 1311 lncRNAs, most of which showed a positive correlation with their target mRNAs, one-third of these IncRNAs were preferentially expressed in winter bamboo shoots. In addition, the predominant AS type observed in moso bamboo was intron retention, while aTSS and aTTS events occurred more frequently than AS. Notably, most genes with AS events were also accompanied by aTSS and aTTS events. Outward rhizome growth in moso bamboo was associated with a significant increase in intron retention, possibly due to changes in the growth environment. As different types of moso bamboo culms grow and develop, a significant number of isoforms undergo changes in their conserved domains due to the regulation of aTSS, aTTS, and AS. As a result, these isoforms may play different roles than their original functions. These isoforms then performed different functions from their original roles, contributing to the transcriptomic complexity of moso bamboo. Overall, this study provided a comprehensive overview of the transcriptomic changes underlying different types of moso bamboo culm growth and development.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Empalme Alternativo , Isoformas de Proteínas/genética , Poaceae/genética , Crecimiento y Desarrollo , Regulación de la Expresión Génica de las Plantas
13.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36835559

RESUMEN

SIMILAR TO RCD ONE (SRO) gene family is a small plant-specific gene family responsible for growth, development, and stress responses. In particular, it plays a vital role in responding to abiotic stresses such as salt, drought, and heavy metals. Poplar SROs are rarely reported to date. In this study, a total of nine SRO genes were identified from Populus simonii × Populus nigra, which are more similar to dicotyledon SRO members. According to phylogenetic analysis, the nine PtSROs can be divided into two groups, and the members in the same cluster have a similar structure. There were some cis-regulatory elements related to abiotic stress response and hormone-induced factors identified in the promoter regions of PtSROs members. Subcellular localization and transcriptional activation activity of PtSRO members revealed a consistent expression profile of the genes with similar structural profiles. In addition, both RT-qPCR and RNA-Seq results indicated that PtSRO members responded to PEG-6000, NaCl, and ABA stress in the roots and leaves of Populus simonii × Populus nigra. The PtSRO genes displayed different expression patterns and peaked at different time points in the two tissues, which was more significant in the leaves. Among them, PtSRO1c and PtSRO2c were more prominent in response to abiotic stress. Furthermore, protein interaction prediction showed that the nine PtSROs might interact with a broad range of transcription factors (TFs) involved in stress responses. In conclusion, the study provides a solid basis for functional analysis of the SRO gene family in abiotic stress responses in poplar.


Asunto(s)
Perfilación de la Expresión Génica , Populus , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Populus/genética , Filogenia , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes
14.
Plants (Basel) ; 11(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432787

RESUMEN

Bamboo is an important component in subtropical and tropical forest communities. The plant has characteristic long lanceolate leaves with parallel venation. Prior studies have shown that the leaf shapes of this plant group can be well described by a simplified version (referred to as SGE-1) of the Gielis equation, a polar coordinate equation extended from the superellipse equation. SGE-1 with only two model parameters is less complex than the original Gielis equation with six parameters. Previous studies have seldom tested whether other simplified versions of the Gielis equation are superior to SGE-1 in fitting empirical leaf shape data. In the present study, we compared a three-parameter Gielis equation (referred to as SGE-2) with the two-parameter SGE-1 using the leaf boundary coordinate data of six bamboo species within the same genus that have representative long lanceolate leaves, with >300 leaves for each species. We sampled 2000 data points at approximately equidistant locations on the boundary of each leaf, and estimated the parameters for the two models. The root−mean−square error (RMSE) between the observed and predicted radii from the polar point to data points on the boundary of each leaf was used as a measure of the model goodness of fit, and the mean percent error between the RMSEs from fitting SGE-1 and SGE-2 was used to examine whether the introduction of an additional parameter in SGE-1 remarkably improves the model's fitting. We found that the RMSE value of SGE-2 was always smaller than that of SGE-1. The mean percent errors among the two models ranged from 7.5% to 20% across the six species. These results indicate that SGE-2 is superior to SGE-1 and should be used in fitting leaf shapes. We argue that the results of the current study can be potentially extended to other lanceolate leaf shapes.

15.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430513

RESUMEN

SQUAMOSA Promoter-Binding Protein-Like (SPL) family is well-known for playing an important role in plant growth and development, specifically in the reproductive process. Bamboo plants have special reproductive characteristics with a prolonged vegetative phase and uncertain flowering time. However, the underlying functions of SPL genes in reproductive growth are undisclosed in bamboo plants. In the study, a total of 28 SPLs were screened from an ornamental dwarf bamboo species, Pleioblastus pygmaeus. Phylogenetic analysis indicates that 183 SPLs from eight plant species can be classified into nine subfamilies, and the 28 PpSPLs are distributed among eight subfamilies. Homologous analysis shows that as many as 32 pairs of homologous genes were found between P. pygmaeus and rice, and 83 pairs were found between P. pygmaeus and Moso bamboo, whose Ka/Ks values are all <1. MiRNA target prediction reveals that 13 out of the 28 PpSPLs have recognition sites complementary to miRNA156. To screen the SPLs involved in the reproductive growth of bamboo plants, the mRNA abundance of the 28 PpSPLs was profiled in the different tissues of flowering P. pygmaeus and non-flowering plants by RNA-Seq. Moreover, the relative expression level of eight PpSPLs is significantly higher in flowering P. pygmaeus than that in non-flowering plants, which was also validated by RT-qPCR. Combined with phylogenetic analysis and homologous analysis, the eight significant, differentially expressed PpSPLs were identified to be associated with the reproductive process and flower organ development. Among them, there are four potential miRNA156-targeting PpSPLs involved in the flowering process. Of significant interest in the study is the identification of 28 SPLs and the exploration of four key flowering-related SPLs from P. pygmaeus, which provides a theoretic basis for revealing the underlying functions of SPLs in the reproductive growth of bamboo plants.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Flores/metabolismo , Proteínas Portadoras/metabolismo , Filogenia , Poaceae/metabolismo
16.
Front Plant Sci ; 13: 1023240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438131

RESUMEN

Woody bamboos have peculiar flowering characteristics with intervals ranging from several years to more than 100 years. Elucidating flowering time and reproductive development in bamboo could be beneficial for both humans and wildlife. To identity the mechanisms responsible for flowering time and embryo abortion in Bambusa oldhamii 'Xia Zao' ZSX, a transcriptome sequencing project was initiated to characterize the genes involved in developing flowers in this bamboo species. Morphological studies showed that pollen abortion in this bamboo species was mainly caused by a delay in tapetum degradation and abnormal meiotic process. Differential expression (DE) and optimized hierarchical clustering analyses identified three of nine gene expression clusters with decreasing expression at the meiosis of flowering stages. Together with enriched Gene Ontology Biological Process terms for meiosis, this suggests that their expression pattern may be associated with aborted meiosis in B. oldhamii 'Xia Zao'. Moreover, our large-scale phylogenomic analyses comparing meiosis-related transcripts of B. oldhamii 'Xia Zao' with well annotated genes in 22 representative angiosperms and sequence evolution analyses reveal two core meiotic genes NO EXINE FORMATION 1 (NFE1) and PMS1 with nonsense mutations in their coding regions, likely providing another line of evidence supporting embryo abortion in B. oldhamii 'Xia Zao'. Similar analyses, however, reveal conserved sequence evolution in flowering pathways such as LEAFY (LFY) and FLOWERING LOCUS T (FT). Seventeen orthogroups associated with flowering were identified by DE analyses between nonflowering and flowering culm buds. Six regulators found primarily in several connected network nodes of the photoperiod pathway were confirmed by mapping to the flowering time network in rice, such as Heading date (Hd3a) and Rice FT-like 1 (RFT1) which integrate upstream signaling into the downstream effectors. This suggests the existence of an intact photoperiod pathway is likely the key regulators that switch on/off flowering in B. oldhamii 'Xia Zao'.

17.
Front Psychol ; 13: 970497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312064

RESUMEN

English has become an important tool for China's opening to the outside world and exchanges with other countries. More and more people have the motivation and requirements to learn English, but under the traditional English learning mode and traditional teaching mode, the cultivation of learners' autonomous learning habits is ignored. This article aims to study the construction of artificial intelligence-assisted English learning resource query system and establish the relevant feedback mechanism of retrieval. This article applies this mechanism to the retrieval of learning resources, so as to provide learners with the learning resources they really need and improve learners' learning efficiency. This article proposes to find the relevant knowledge points by extracting the knowledge points of the retrieval content. It realizes the query expansion based on knowledge and then realizes the expansion of retrieval results. It realizes the mapping of knowledge points on the retrieval content, the query and expansion of knowledge points, and the presentation of learning resources of the knowledge point index. It also uses the relevant feedback mechanism to adjust the retrieval results to meet the retrieval needs of learners. The experimental results show that the number of knowledge points can be increased to 2-4 times by query expansion based on English resources. Thus, the number of learning resources of search results can be increased to 3-10 times, the expansion of search results can be realized, and the overall recall will be greatly improved. In this article, the related methods of artificial intelligence are applied to the construction experiment of the English learning resource query system, which has a certain promotion effect on the construction of the system.

18.
Immunobiology ; 227(5): 152262, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36049365

RESUMEN

The oncogene ABL1 plays an important role in various cancers, while its roles remain unclear in pneumonia. This study aims to investigate the roles of ABL1 in pneumonia and the underlying mechanisms. RNA sequencing was used to determine the expressions of multiple kinases in the PBMCs. A series of overexpression and knockout cell lines were constructed. Besides, an intranasal lung infection mouse model was pre-treated with asciminb. ELISAs and qPCR were used to determine the levels of target genes. In addition, STRING Interaction Network and Immunoblotting assays were used to determine the interaction between target proteins. An elevation in ABL1 was observed in the infant with Ecoli pneumonia. ABL1 was positively correlated to the levels of inflammatory cytokines and the activation of the NF-kB pathways. In vivo data demonstrated that the inhibition of ABL1 suppressed the inflammatory cytokines, reduced the lung bacterial burden, and ameliorated the lung injury score. ABL1 inhibited the phosphorylation of IκBα and p38 and regulated the ubiquitination of TRAF6. ABL1 regulates the inflammatory response in pneumonia in part by the regulation of MAPK and NF-κB pathways and TRAF6 ubiquitination.


Asunto(s)
Inmunidad Innata , FN-kappa B , Proteínas Proto-Oncogénicas c-abl , Factor 6 Asociado a Receptor de TNF , Animales , Citocinas/metabolismo , Humanos , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Inflamación/genética , Inflamación/metabolismo , Ratones , FN-kappa B/metabolismo , Oncogenes , Proteínas Proto-Oncogénicas c-abl/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitinación
19.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142609

RESUMEN

Extreme environments, especially drought and high salt conditions, seriously affect plant growth and development. Ethylene-responsive factor (ERF) transcription factors play an important role in salt stress response. In this study, a significantly upregulated ERF gene was identified in 84K (Populus alba × P. glandulosa), which was named PagERF072. PagERF072 was confirmed to be a nuclear-localized protein. The results of yeast two-hybrid (Y2H) assay showed that PagERF072 protein exhibited no self-activating activity, and yeast one-hybrid (Y1H) demonstrated that PagERF072 could specifically bind to GCC-box element. Under salt stress, the transgenic poplar lines overexpressing PagERF072 showed improved salt tolerance. The activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) in transgenic poplars were significantly increased relative to those of wild-type (WT) plants, whereas malondialdehyde (MDA) content showed an opposite trend. In addition, reactive oxygen species (ROS) was significantly reduced, and the expression levels of POD- and SOD-related genes were significantly increased in transgenic poplars under salt stress compared with WT. All results indicate that overexpression of the PagERF072 gene can improve the salt tolerance of transgenic poplars.


Asunto(s)
Populus , Tolerancia a la Sal , Catalasa/genética , Catalasa/metabolismo , Sequías , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Malondialdehído/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Populus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/metabolismo
20.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142847

RESUMEN

The F-box family exists in a wide variety of plants and plays an extremely important role in plant growth, development and stress responses. However, systematic studies of F-box family have not been reported in populus trichocarpa. In the present study, 245 PtrFBX proteins in total were identified, and a phylogenetic tree was constructed on the basis of their C-terminal conserved domains, which was divided into 16 groups (A-P). F-box proteins were located in 19 chromosomes and six scaffolds, and segmental duplication was main force for the evolution of the F-box family in poplar. Collinearity analysis was conducted between poplar and other species including Arabidopsis thaliana, Glycine max, Anemone vitifolia Buch, Oryza sativa and Zea mays, which indicated that poplar has a relatively close relationship with G. max. The promoter regions of PtrFBX genes mainly contain two kinds of cis-elements, including hormone-responsive elements and stress-related elements. Transcriptome analysis indicated that there were 82 differentially expressed PtrFBX genes (DEGs), among which 64 DEGs were in the roots, 17 in the leaves and 26 in the stems. In addition, a co-expression network analysis of four representative PtrFBX genes indicated that their co-expression gene sets were mainly involved in abiotic stress responses and complex physiological processes. Using bioinformatic methods, we explored the structure, evolution and expression pattern of F-box genes in poplar, which provided clues to the molecular function of F-box family members and the screening of salt-tolerant PtrFBX genes.


Asunto(s)
Arabidopsis , Proteínas F-Box , Populus , Arabidopsis/genética , Proteínas F-Box/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA