Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7052, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147740

RESUMEN

The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory, and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry, and nonsymmorphic lattice symmetry. The corresponding drumhead surface states traverse the whole surface Brillouin zone. YMn2Ge2 thus serves as a platform to exhibit the interplay of multiple degenerate nodal physics and antiferromagnetism. Interestingly, the magnetic nodal line displays a d-orbital dependent renormalization along its trajectory in momentum space, thereby manifesting Hund's coupling. Our findings offer insights into the effect of electronic correlations on magnetic Dirac nodal lines, leading to an antiferromagnetic Hund nodal line.

2.
Nat Commun ; 15(1): 6001, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019865

RESUMEN

A two-dimensional (2D) Weyl semimetal, akin to a spinful variant of graphene, represents a topological matter characterized by Weyl fermion-like quasiparticles in low dimensions. The spinful linear band structure in two dimensions gives rise to distinctive topological properties, accompanied by the emergence of Fermi string edge states. We report the experimental realization of a 2D Weyl semimetal, bismuthene monolayer grown on SnS(Se) substrates. Using spin and angle-resolved photoemission and scanning tunneling spectroscopies, we directly observe spin-polarized Weyl cones, Weyl nodes, and Fermi strings, providing consistent evidence of their inherent topological characteristics. Our work opens the door for the experimental study of Weyl fermions in low-dimensional materials.

3.
Mater Horiz ; 11(14): 3420-3426, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691397

RESUMEN

The two-dimensional quantum anomalous Hall (QAH) effect is direct evidence of non-trivial Berry curvature topology in condensed matter physics. Searching for QAH in 2D materials, particularly with simplified fabrication methods, poses a significant challenge in future applications. Despite numerous theoretical works proposed for the QAH effect with C = 2 in graphene, neglecting magnetism sources such as proper substrate effects lacks experimental evidence. In this work, we propose the QAH effect in graphene/MnBi2Te4 (MBT) heterostructure based on density-functional theory (DFT) calculations. The monolayer MBT introduces spin-orbital coupling, Zeeman exchange field, and Kekulé distortion as a substrate effect into graphene, resulting in QAH with C = 1 in the heterostructure. Our effective Hamiltonian further presents a rich phase diagram that has not been studied previously. Our work provides a new and practical way to explore the QAH effect in monolayer graphene and the magnetic topological phases by the flexibility of MBT family materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA