Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Stem Cell Res Ther ; 14(1): 184, 2023 07 27.
Article En | MEDLINE | ID: mdl-37501214

BACKGROUND: Decompensated liver cirrhosis (DLC), a terminal-stage complication of liver disease, is a major cause of morbidity and mortality in patients with hepatopathies. Human umbilical cord mesenchymal stem cell (hUCMSC) therapy has emerged as a novel treatment alternative for the treatment of DLC. However, optimized therapy protocols and the associated mechanisms are not entirely understood. METHODS: We constructed a DLC rat model consistent with the typical clinical characteristics combined use of PB and CCL4. Performing dynamic detection of liver morphology and function in rats for 11 weeks, various disease characteristics of DLC and the therapeutic effect of hUCMSCs on DLC in experimental rats were thoroughly investigated, according to ascites examination, histopathological, and related blood biochemical analyses. Flow cytometry analysis of rat liver, immunofluorescence, and RT-qPCR was performed to examine the changes in the liver immune microenvironment after hucMSCs treatment. We performed RNA-seq analysis of liver and primary macrophages and hUCMSCs co-culture system in vitro to explore possible signaling pathways. PPARγ antagonist, GW9662, and clodronate liposomes were used to inhibit PPAR activation and pre-exhaustion of macrophages in DLC rats' livers, respectively. RESULTS: We found that changing the two key issues, the frequency and initial phase of hUCMSCs infusion, can affect the efficacy of hUCMSCs, and the optimal hUCMSCs treatment schedule is once every week for three weeks at the early stage of DLC progression, providing the best therapeutic effect in reducing mortality and ascites, and improving liver function in DLC rats. hUCMSCs treatment skewed the macrophage phenotype from M1-type to M2-type by activating the PPARγ signaling pathway in the liver, which was approved by primary macrophages and hUCMSCs co-culture system in vitro. Both inhibition of PPARγ activation with GW9662 and pre-exhaustion of macrophages in DLC rats' liver abolished the regulation of hUCMSCs on macrophage polarization, thus attenuating the beneficial effect of hUCMSCs treatment in DLC rats. CONCLUSIONS: These data demonstrated that the optimal hUCMSCs treatment effectively inhibits the ascites formation, prolongs survival and significantly improves liver structure and function in DLC rats through the activation of the PPARγ signaling pathway within liver macrophages. Our study compared the efficacy of different hUCMSCs infusion regimens for DLC, providing new insights on cell-based therapies for regenerative medicine.


Ascites , PPAR gamma , Rats , Humans , Animals , PPAR gamma/genetics , Ascites/therapy , Liver Cirrhosis/therapy , Macrophages , Umbilical Cord
2.
Stem Cell Res Ther ; 13(1): 465, 2022 09 08.
Article En | MEDLINE | ID: mdl-36076306

BACKGROUND: Inflammatory bowel diseases (IBD) are chronic relapsing-remitting inflammatory diseases of the gastrointestinal tract that are typically categorized into two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). Although MSCs therapy has achieved encouraging outcomes in IBD therapy, objective responses are limited in colon fibrosis stenosis owing to the complicated microenvironment of CD and MSCs heterogeneity of quality. Here, we chose IFN-γ and kynurenic acid (KYNA) to overcome the low response and heterogeneity of human adipose-derived MSCs (hADSCs) to treat IBD and expand the therapeutic effects based on the excellent ability of IFN-γ and KYNA to promote indoleamine 2,3-dioxygenase-1 (IDO-1) signaling, providing a potential protocol to treat IBD and fibrosis disease. METHODS: hADSCs were isolated, cultured, and identified from human abdominal adipose tissue. The CD pathology-like acute colitis and chronic colon fibrosis rat model was induced by 2,4,6-trinitrobenzen sulfonic acid (TNBS). hADSCs were pretreated in vitro with IFN-γ and KYNA and then were transplanted intravenously at day 1 and 3 of TNBS administration in colitis along with at day 1, 15, and 29 of TNBS administration in chronic colonic fibrosis. Therapeutic efficacy was evaluated by body weights, disease activity index, pathological staining, real-time PCR, Western blot, and flow cytometry. For knockout of IDO-1, hADSCs were transfected with IDO-1-targeting small gRNA carried on a CRISPR-Cas9-lentivirus vector. RESULTS: hADSCs treated with IFN-γ and KYNA significantly upregulated the expression and secretion of IDO-1, which has effectively ameliorated CD pathology-like colitis injury and fibrosis. Notably, the ability of hADSCs with IDO-1 knockout to treat colitis was significantly impaired and diminished the protective effects of the primed hADSCs with IFN-γ and KYNA. CONCLUSION: Inflammatory cytokines IFN-γ- and KYNA-treated hADSCs more effectively alleviate TNBS-induced colitis and colonic fibrosis through an IDO-1-dependent manner. Primed hADSCs are a promising new strategy to improve the therapeutic efficacy of MSCs and worth further research.


Colitis , Crohn Disease , Inflammatory Bowel Diseases , Mesenchymal Stem Cells , Animals , Colitis/chemically induced , Crohn Disease/pathology , Fibrosis , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Kynurenic Acid/adverse effects , Kynurenic Acid/metabolism , Mesenchymal Stem Cells/metabolism , Rats
3.
Stem Cell Res Ther ; 12(1): 375, 2021 07 02.
Article En | MEDLINE | ID: mdl-34215318

BACKGROUND: Direct reprogramming of human fibroblasts to hepatocyte-like cells was proposed to generate large-scale functional hepatocytes demanded by liver tissue engineering. However, the difficulty in obtaining large quantities of human fibroblasts greatly restricted the extensive implementation of this approach. Meanwhile, human umbilical cord mesenchymal stem cells (HUMSCs) are the preferred cell source for HLCs with the advantages of limited ethical concerns, easy accessibility, and propagation in vitro. However, no direct reprogramming protocol for converting HUMSCs to hepatoblast-like cells (HLCs) has been reported. METHODS: HLCs were successfully generated from HUMSCs by forced expression of FOXA3, HNF1A, and HNF4A (collectively as 3TFs) and c-Myc. In vitro and in vivo functional experiments were conducted to demonstrate the hepatic phenotype, characterization, and function of HUMSC-derived HLCs (HUMSC-iHeps). ChIP-seq and RNA-seq were integrated to reveal the potential molecular mechanisms underlying c-Myc-mediated reprogramming. RESULTS: We showed that c-Myc greatly improved the trans-differentiation efficiency for HLCs from HUMSCs, which remained highly efficient in reprogramming fibroblasts into HLCs, suggesting c-Myc could promote direct reprogramming and its potentially widespread applicability for generating large amounts of HLCs in vitro. Mice transplantation experiments further confirmed the therapeutic potential of HUMSC-iHeps by liver function restoration and survival prolongation. Besides, in vivo safety assessment demonstrated the low risk of the tumorigenic potential of HUMSC-iHeps. We found that c-Myc functioned predominantly at an early phase of reprogramming, and we further unraveled the regulatory network altered by c-Myc. CONCLUSIONS: c-Myc enhanced reprogramming efficiency of HLCs from HUMSCs. A large scale of functional HLCs generated more conveniently from HUMSCs could benefit biomedical studies and applications of liver diseases.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Cell Differentiation , Hepatocytes , Humans , Mice , Umbilical Cord
4.
Stem Cell Res Ther ; 12(1): 294, 2021 05 20.
Article En | MEDLINE | ID: mdl-34016164

BACKGROUND: Liver fibrosis (LF) is a common pathological process characterized by the activation of hepatic stellate cells (HSCs) and accumulation of extracellular matrix. Severe LF causes cirrhosis and even liver failure, a major cause of morbidity and mortality worldwide. Transplantation of human placental mesenchymal stem cells (hPMSCs) has been considered as an alternative therapy. However, the underlying mechanisms and the appropriate time window for hPMSC transplantation are not well understood. METHODS: We established mouse models of CCl4-injured LF and administered hPMSCs at different stages of LF once a week for 2 weeks. The therapeutic effect of hPMSCs on LF was investigated, according to histopathological and blood biochemical analyses. In vitro, the effect of hPMSCs and the secretomes of hPMSCs on the inhibition of activated HSCs was assessed. RNA sequencing (RNA-seq) analysis, real-time PCR array, and western blot were performed to explore possible signaling pathways involved in treatment of LF with hPMSCs. RESULTS: hPMSC treatment notably alleviates experimental hepatic fibrosis, restores liver function, and inhibits inflammation. Furthermore, the therapeutic effect of hPMSCs against mild-to-moderate LF was significantly greater than against severe LF. In vitro, we observed that the hPMSCs as well as the secretomes of hPMSCs were able to decrease the activation of HSCs. Mechanistic dissection studies showed that hPMSC treatment downregulated the expression of fibrosis-related genes, and this was accompanied by the upregulation of Caveolin-1 (Cav1) (p < 0.001). This suggested that the amelioration of LF occurred partly due to the restoration of Cav1 expression in activated HSCs. Upregulation of Cav1 can inhibit the TGF-ß/Smad signaling pathway, mainly by reducing Smad2 phosphorylation, resulting in the inhibition of activated HSCs, whereas this effect could be abated if Cav1 was silenced in advance by siRNAs. CONCLUSIONS: Our findings suggest that hPMSCs could provide multifaceted therapeutic benefits for the treatment of LF, and the TGF-ß/Cav1 pathway might act as a therapeutic target for hPMSCs in the treatment of LF.


Hepatic Stellate Cells , Mesenchymal Stem Cells , Animals , Female , Humans , Liver/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Mice , Placenta , Pregnancy , Up-Regulation
5.
Cell Death Dis ; 11(6): 482, 2020 06 25.
Article En | MEDLINE | ID: mdl-32587258

Transcription factors are known to mediate the conversion of somatic cells to induced pluripotent stem cells (iPSCs). Transcription factor TFAP2C plays important roles in the regulation of embryonic development and carcinogenesis; however, the roles of Tfap2c in regulating somatic cell reprogramming are not well understood. Here we demonstrate Tfap2c is induced during the generation of iPSCs from mouse fibroblasts and acts as a facilitator for iPSCs formation. Mechanistically, the c-Myc-dependent apoptosis, which is a roadblock to reprogramming, can be significantly mitigated by Tfap2c overexpression. Meanwhile, Tfap2c can greatly promote mesenchymal-to-epithelial transition (MET) at initiation stage of OSKM-induced reprogramming. Further analysis of gene expression and targets of Tfap2c during reprogramming by RNA-sequencing (RNA-seq) and ChIP-qPCR indicates that TFAP2C can promote epithelial gene expression by binding to their promoters directly. Finally, knockdown of E-cadherin (Cdh1), an important downstream target of TFAP2C and a critical regulator of MET antagonizes Tfap2c-mediated reprogramming. Taken together, we conclude that Tfap2c serves as a strong activator for somatic cell reprogramming through promoting the MET and inhibiting c-Myc-dependent apoptosis.


Apoptosis , Cellular Reprogramming , Epithelial-Mesenchymal Transition , Transcription Factor AP-2/metabolism , Animals , Apoptosis/genetics , Base Sequence , Cellular Reprogramming/genetics , Epithelial-Mesenchymal Transition/genetics , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-myc/metabolism , Up-Regulation/genetics
6.
Stem Cell Res Ther ; 9(1): 350, 2018 12 17.
Article En | MEDLINE | ID: mdl-30558659

BACKGROUND: Ischemic vascular diseases are the major cause of death worldwide. In recent years, endothelial cell (EC)-based approaches to vascular regeneration are increasingly viable strategies for treating ischemic diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. Here, we show an alternative protocol that facilitates the generation of functional and expandable ETS variant 2 (ETV2)-induced endothelial-like cells (EiECs) from human adipose-derived stem cells (hADSCs), providing a potential source of cells for autologous ECs to treat ischemic vascular diseases. METHODS: hADSCs were obtained from fresh human adipose tissue. Passage 3 hADSCs were transduced with doxycycline (DOX)-inducible ETV2 transcription factor; purified ETV2-hADSCs were induced into endothelial-like cells using a two-stage induction culture system composed of small molecule compounds and cell factors. EiECs were evaluated for their surface markers, proliferation, gene expression, secretory capacity, and effects on vascular regeneration in vivo. RESULTS: We found that short-term ETV2 expression combined with TGF-ß inhibition is sufficient for the generation of kinase insert domain receptor (KDR)+ cells from hADSCs within 10 days. KDR+ cells showed immature endothelial characteristics, and they can gradually mature in a chemically defined induction medium at the second stage of induction. Futher studies showed that KDR+ cells deriving EC-like cells could stably self-renew and expand about 106-fold in 1 month, and they exhibited expected genome-wide molecular features of mature ECs. Functionally, these EC-like cells significantly promoted revascularization in a hind limb ischemic model. CONCLUSIONS: We isolated highly purified hADSCs and effectively converted them into functional and expandable endothelial-like cells. Thus, the study may provide an alternative strategy to obtain functional EC-like cells with potential for biomedical and pharmaceutical applications.


Adipocytes/metabolism , Cell- and Tissue-Based Therapy/methods , Endothelial Cells/metabolism , Regenerative Medicine/methods , Adipocytes/cytology , Animals , Cell Differentiation , Endothelial Cells/cytology , Humans , Male , Mice , Mice, Nude
7.
Sci Rep ; 8(1): 1974, 2018 01 31.
Article En | MEDLINE | ID: mdl-29386664

The generation of spin-polarised carriers in a non-magnetic material holds the key to realise highly efficient spintronic devices. Recently, it has been shown that the large spin-orbit coupling can generate spin-polarised currents in noble metals such as tungsten and platinum. Especially, if small samples of such metals are rotated on a plane disc in the presence of a perpendicular magnetic field, the orbital angular momentum is altered leading to a segregation of spin up and spin down electrons, i.e., a spin current in the samples. This is manifested via an induced magnetic moment on the metal. In this letter, magneto-optical Kerr effect (MOKE) is used to detect induced magnetic moments which allows remote measurements on metal samples rotating at 100~210 Hz. Our results confirm the mechanical generation of spin-polarised currents via optical detection of spin accumulation.

8.
Stem Cells ; 35(9): 2060-2070, 2017 09.
Article En | MEDLINE | ID: mdl-28514506

Autologous adipose tissue or adipose tissue with additive adipose-derived mesenchymal stem cells (ADSCs) is used in the breast reconstruction of breast cancer patients who undergo mastectomy. ADSCs play an important role in the angiogenesis and adipogenesis, which make it much better than other materials. However, ADSCs may promote residual tumor cells to proliferate or metastasize, and the mechanism is still not fully understood. In this study, we demonstrated that human ADSCs (hADSCs) could facilitate tumor cells growth after co-injection with MCF7 and ZR-75-30 breast cancer cells (BCCs) by promoting angiogenesis, but hADSCs showed limited effect on the growth of MDA-MB-231 BCCs. Intriguingly, compared with ZR-75-30 tumor cells, MCF7 tumor cells were more potentially promoted by hADSCs in the aspects of angiogenesis and proliferation. Consistent with this, cytokine and angiogenesis array analyses showed that after co-injection with hADSCs, the CXCL1 and CXCL8 concentration were significantly increased in MCF7 tumor, but only moderately increased in ZR-75-30 tumor and did not increase in MDA-MB-231 tumor. Furthermore, we found that CXCL1/8 were mainly derived from hADSCs and could increase the migration and tube formation of human umbilical vein endothelial cells (HUVECs) by signaling via their receptors CXCR1 and CXCR2. A CXCR1/2-specific antagonist (SCH527123) attenuated the angiogenesis and tumor growth in vivo. Our findings suggest that CXCL1/8 secreted by hADSCs could promote breast cancer angiogenesis and therefore provide better understanding of safety concerns regarding the clinical application of hADSCs and suggestion in further novel therapeutic options. Stem Cells 2017;35:2060-2070.


Adipose Tissue/pathology , Breast Neoplasms/blood supply , Breast Neoplasms/pathology , Chemokine CXCL1/metabolism , Interleukin-8/metabolism , Mesenchymal Stem Cells/metabolism , Neovascularization, Pathologic/pathology , Animals , Benzamides/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Separation , Cyclobutanes/pharmacology , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/drug effects , Mice, Nude , Neovascularization, Physiologic/drug effects , Tumor Microenvironment , Xenograft Model Antitumor Assays
9.
Stem Cell Res Ther ; 7(1): 105, 2016 08 05.
Article En | MEDLINE | ID: mdl-27495937

BACKGROUND: Liver disease is a major cause of death worldwide. Orthotropic liver transplantation (OLT) represents the only effective treatment for patients with liver failure, but the increasing demand for organs is unfortunately so great that its application is limited. Hepatocyte transplantation is a promising alternative to OLT for the treatment of some liver-based metabolic disorders or acute liver failure. Unfortunately, the lack of donor livers also makes it difficult to obtain enough viable hepatocytes for hepatocyte-based therapies. Currently, a fundamental solution to this key problem is still lacking. Here we show a novel non-transgenic protocol that facilitates the rapid generation of functional induced hepatocytes (iHeps) from human adipose-derived stem cells (hADSCs), providing a source of available cells for autologous hepatocytes to treat liver disease. METHODS: We used collagenase digestion to isolate hADSCs. The surface marker was detected by flow cytometry. The multipotential differentiation potency was detected by induction into adipocytes, osteocytes, and chondrocytes. Passage 3-7 hADSCs were induced into iHeps using an induction culture system composed of small molecule compounds and cell factors. RESULTS: Primary cultured hADSCs presented a fusiform or polygon appearance that became fibroblast-like after passage 3. More than 95 % of the cells expressed the mesenchymal cell markers CD29, CD44, CD166, CD105, and CD90. hADSCs possessed multipotential differentiation towards adipocytes, osteocytes, and chondrocytes. We rapidly induced hADSCs into iHeps within 10 days in vitro; the cellular morphology changed from fusiform to close-connected cubiform, which was similar to hepatocytes. After induction, most of the iHeps co-expressed albumin and alpha-1 antitrypsin; they also expressed mature hepatocyte special genes and achieved the basic functions of hepatocyte. Moreover, iHep transplantation could improve the liver function of acute liver-injured NPG mice and prolong life. CONCLUSIONS: We isolated highly purified hADSCs and rapidly induced them into functional hepatocyte-like cells within 10 days. These results provide a source of available cells for autologous hepatocytes to treat liver disease.


Adipocytes/cytology , Hepatocytes/cytology , Stem Cells/cytology , Adipocytes/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation/physiology , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Female , Hepatocytes/metabolism , Humans , Liver/cytology , Liver/metabolism , Liver Diseases/metabolism , Liver Diseases/therapy , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Osteocytes/cytology , Osteocytes/metabolism , Stem Cells/metabolism
10.
Stem Cell Res Ther ; 6: 193, 2015 Oct 05.
Article En | MEDLINE | ID: mdl-26438426

The generation of functional hepatocytes is a major challenge for regenerative medicine and drug discovery. Here we show a method that facilitates generation of induced functional hepatocytes (iHeps) from adipose-derived stem cells (ADSCs) within 9 days. iHeps express hepatocytic gene programs and display functions characteristic of mature hepatocytes, including cytochrome P450 enzyme activity. Upon transplantation into mice with carbon tetrachloride (CCl4)-induced acute fulminant liver failure, iHeps restore the liver function and prolong survival. The work could contribute to the development of alternative strategies to obtain nonhepatic cell-derived mature hepatocytes with potential for biomedical and pharmaceutical applications.


Adult Stem Cells/physiology , Cell Differentiation , Hepatocytes/physiology , Abdominal Fat/cytology , Animals , Carbon Tetrachloride , Cells, Cultured , Female , Hepatocytes/transplantation , Liver Failure/chemically induced , Liver Failure/therapy , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Rats, Inbred Lew
...