Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Mater Sci Eng C Mater Biol Appl ; 96: 166-175, 2019 Mar.
Article En | MEDLINE | ID: mdl-30606522

An ideal dental implant coating should provide a highly protective interface and an osteogenic function. Inspired by the excellent biocompatibility and anti-corrosion of the Nb element, we produced Nb-based oxide, nitride and carbide films as well as the pure metal Nb film for surface enhancement of dental implants, and compare the impact of the nonmetal elements on the electrochemical, tribological, tribo-corrosion and biological performance of the coated implants. The NbC film, composed of a single-phased subniobium carbide, displays mechanical advantages and anticorrosion characteristics that are distinguished from the other composite films, highlighting its potential outstanding protective efficiency for dental implants against corrosion and wear. Rat bone marrow mesenchymal stem cells (rBMSCS) were found more readily to attach, grow and osteogenically differentiate on the NbC film compared to the Nb, NbO and NbN films, indicating the osteogenesis potential of the NbC film. Taken all the results together, it can be concluded that the NbC film have the highest potential for dental implant surface modification.


Cell Differentiation/drug effects , Coated Materials, Biocompatible , Dental Implants , Membranes, Artificial , Mesenchymal Stem Cells/metabolism , Niobium , Osteogenesis/drug effects , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Mesenchymal Stem Cells/cytology , Niobium/chemistry , Niobium/pharmacology , Rats , Rats, Sprague-Dawley
2.
J Hazard Mater ; 353: 173-181, 2018 07 05.
Article En | MEDLINE | ID: mdl-29674092

The use of silver nanoparticles (AgNPs) result in an inevitable contact with aquatic environments. Here we study the behavior of AgNPs and the developmental toxicity in zebrafish embryos exposed to these nanoparticles (0-10 mg/L) with and without the presence of HA (20 mg/L), using zebrafish facility water (ZFW) and zebrafish growing media (ZGM). The presence of cations and HA gave rise to a decrease in Ag ion release and ζ-potential, an increase in the hydrodynamic diameter and oxidation of the AgNP surface. The results show that the presence of HA and cations in the media, as well as the silver speciation, i.e., the unusual presence of Ag3+, decreases the toxicity of AgNPs (LC50AgNPs: 1.19 mg/L; LC50AgNPs + HA: 3.56 mg/L), as well as silver bioavailability and toxicity in zebrafish embryos. Developmental alterations and the LC50 (1.19 mg/L) of AgNPs in ZFW were more relevant (p ≤ 0.05) than for AgNPs in ZGM (LC50 ˃ 10 mg/L). It was demonstrated that the bioaccumulation and toxicity of AgNPs depends on several factors including AgNPs concentration, nanoparticle aggregation, dissolved silver ions, speciation of silver ions, the amount of salt in the environment, the presence of humic substances and others, and different combinations of all of these factors.


Humic Substances , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/toxicity , Animals , Embryo, Nonmammalian/drug effects , Larva/drug effects , Larva/metabolism , Magnesium Sulfate/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Sodium Bicarbonate/chemistry , Surface Properties , Water Pollutants, Chemical/chemistry , Zebrafish
3.
Eur J Pharm Sci ; 118: 165-175, 2018 Jun 15.
Article En | MEDLINE | ID: mdl-29597043

The aim of this work was to investigate the potential of pegylated poly(anhydride) nanoparticles to enhance the oral bioavailability of docetaxel (DTX). Nanoparticles were prepared after the incubation between the copolymer of methyl vinyl ether and maleic anhydride (Gantrez® AN), poly(ethylene glycol) (PEG2000 or PEG6000) and docetaxel (DTX). The oral administration of a single dose of pegylated nanoparticles to mice provided sustained and prolonged therapeutic plasma levels of docetaxel for up 48-72 h. In addition, the relative oral bioavailability of docetaxel was around 32%. The organ distribution studies revealed that docetaxel underwent a similar distribution when orally administered encapsulated in nanoparticles as when intravenously as Taxotere®. This observation, with the fact that the clearance of docetaxel when loaded into the oral pegylated nanoparticles was found to be similar to that of intravenous formulation, suggests that docetaxel would be released at the epithelium surface and then absorbed to the circulation.


Antineoplastic Agents/administration & dosage , Drug Carriers/administration & dosage , Nanoparticles/administration & dosage , Polyanhydrides/administration & dosage , Polyethylene Glycols/administration & dosage , Taxoids/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Biological Availability , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Docetaxel , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Liberation , Female , Mice, Inbred BALB C , Nanoparticles/chemistry , Polyanhydrides/chemistry , Polyanhydrides/pharmacokinetics , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Taxoids/blood , Taxoids/chemistry , Taxoids/pharmacokinetics , Tissue Distribution
4.
Sci Rep ; 7(1): 11800, 2017 09 18.
Article En | MEDLINE | ID: mdl-28924152

Gd2(MoO4)3 (GMO) is a well-studied multiferroic material that exhibits full ferroelectric and ferroelastic behavior at room temperature. However, its difficult stabilization in thin films has prevented the study and exploitation of its multiferroic properties in different architectures. Here, we report on the study of GMO thin films deposited on Si(001) substrates by Pulsed Laser Deposition (PLD). The physicochemical properties of the films are discussed and studied. Results obtained by X-ray diffraction, X-ray photoelectron spectroscopy, high resolution transmission microscopy and second harmonic generation show that the orthorhombic (ß'-GMO) multiferroic phase can be stabilized and homogenized by post deposition thermal reconstruction. Finally, the reconstruction process takes place via a complex surface mechanism with a clear leaf-like behavior.

5.
Langmuir ; 33(39): 10351-10365, 2017 10 03.
Article En | MEDLINE | ID: mdl-28895402

It has been long known that the physical encapsulation of oleic acid-capped iron oxide nanoparticles (OA-IONPs) with the cetyltrimethylammonium (CTA+) surfactant induces the formation of spherical iron oxide nanoparticle clusters (IONPCs). However, the behavior and functional properties of IONPCs in chemical reactions have been largely neglected and are still not well-understood. Herein, we report an unconventional ligand-exchange function of IONPCs activated when dispersed in an ethyl acetate/acetate buffer system. The ligand exchange can successfully transform hydrophobic OA-IONP building blocks of IONPCs into highly hydrophilic, acetate-capped iron oxide nanoparticles (Ac-IONPs). More importantly, we demonstrate that the addition of silica precursors (tetraethyl orthosilicate and 3-aminopropyltriethoxysilane) to the acetate/oleate ligand-exchange reaction of the IONPs induces the disassembly of the IONPCs into monodispersed iron oxide-acetate-silica core-shell-shell (IONPs@acetate@SiO2) nanoparticles. Our observations evidence that the formation of IONPs@acetate@SiO2 nanoparticles is initiated by a unique micellar fusion mechanism between the Pickering-type emulsions of IONPCs and nanoemulsions of silica precursors formed under ethyl acetate buffered conditions. A dynamic rearrangement of the CTA+-oleate bilayer on the IONPC surfaces is proposed to be responsible for the templating process of the silica shells around the individual IONPs. In comparison to previously reported methods in the literature, our work provides a much more detailed experimental evidence of the silica-coating mechanism in a nanoemulsion system. Overall, ethyl acetate is proven to be a very efficient agent for an effortless preparation of monodispersed IONPs@acetate@SiO2 and hydrophilic Ac-IONPs from IONPCs.

6.
ACS Appl Mater Interfaces ; 9(36): 30872-30879, 2017 Sep 13.
Article En | MEDLINE | ID: mdl-28829574

Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin-film electrodes of metal carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures neglect long-lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin-film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained while maintaining high electrocatalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin-film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates toward HER and, furthermore, that the methodology presented here is suitable to produce other transition-metal carbides with improved catalytic and mechanical properties.

7.
Materials (Basel) ; 10(8)2017 Jul 25.
Article En | MEDLINE | ID: mdl-28773207

The object of this work was the deposition of a Ta-Hf-C thin film with a gold interlayer on stainless steel, via the physical vapor deposition (PVD) technique, in order to evaluate the properties of different systems subjected to micro-abrasive wear phenomena generated by alumina particles in Ringer's solution. The surface characterization was performed using a scanning electron microscope (SEM) and atomic force microscope (AFM). The crystallographic phases exhibited for each coating were obtained by X-ray diffraction (XRD). As a consequence of modifying the composition of Ta-Hf there was evidence of an improvement in the micro-abrasive wear resistance and, for each system, the wear constants that confirm the enhancement of the surface were calculated. Likewise, these surfaces can be bioactive, generating an alternative to improve the biological fixation of the implants, therefore, the coatings of TaC-HfC/Au contribute in the development of the new generation of orthopedic implants.

8.
Sci Rep ; 7(1): 3080, 2017 06 08.
Article En | MEDLINE | ID: mdl-28596544

In this work we report the hot corrosion properties of binary and ternary films of the Ta-Hf-C system in V2O5-Na2SO4 (50%wt.-50%wt.) molten salts at 700 °C deposited on AISI D3 steel substrates. Additionally, the mechanical and nanowear properties of the films were studied. The results show that the ternary alloys consist of solid solutions of the TaC and HfC binary carbides. The ternary alloy films have higher hardness and elastic recoveries, reaching 26.2 GPa and 87%, respectively, and lower nanowear when compared to the binary films. The corrosion rates of the ternary alloys have a superior behavior compared to the binary films, with corrosion rates as low as 0.058 µm/year. The combination and tunability of high hardness, elastic recovery, low nanowear and an excellent resistance to high temperature corrosion demonstrates the potential of the ternary Ta-Hf-C alloy films for applications in extreme conditions.

9.
Mater Sci Eng C Mater Biol Appl ; 78: 1072-1085, 2017 Sep 01.
Article En | MEDLINE | ID: mdl-28575942

In this study ZnPc@TiO2 hybrid nanostructures, both nanoparticles and nanotubes, as potential photosensitizers for the photodynamic therapy, fluorescent bioimaging agents, as well as anti-cancer drug nanocarriers, were prepared via zinc phthalocyanine (ZnPc) deposition on TiO2. In order to provide the selectivity of prepared hybrid nanostructures towards cancer cells they were modified with folic acid molecules (FA). The efficient attachment of both ZnPc and FA molecules was confirmed with dynamic light scattering (DLS), zeta potential measurements and X-ray photoelectron spectroscopy (XPS). It was presented that ZnPc and FA attachment has a strong effect on fluorescence emission properties of TiO2 nanostructures, which can be further used for their simultaneous visualization upon cellular uptake. ZnPc@TiO2 and FA/ZnPc@TiO2 hybrid nanotubes were then employed as doxorubicin nanocarriers. It was demonstrated that doxorubicin can be easily loaded on these hybrid nanostructures via an electrostatic interaction and then released. In vitro cytotoxicity and photo-cytotoxic activity studies showed that prepared hybrid nanostructures were selectively targeting to cancer cells. Doxorubicin loaded hybrid nanostructures were significantly more cytotoxic than un-loaded ones and their cytotoxic effect was even more severe upon irradiation. The cellular uptake of prepared hybrid nanostructures and their localization in cells was monitored in vitro in 2D cell culture and tumor-like 3D multicellular culture environment with fluorescent confocal microscopy. These hybrid nanostructures preferentially penetrated into human cervical cancer cells (HeLa) than into normal fibroblasts (MSU-1.1) and were mainly localized within the cell cytoplasm. HeLa cells spheroids were also efficiently labelled by prepared hybrid nanostructures. Fluorescent imaging of Hela cells treated with doxorubicin loaded hybrid nanostructures showed that doxorubicin was effectively delivered into cells, released and evenly distributed in the cytoplasm. In conclusion, prepared hybrid nanostructures exhibit high potential as selective bioimaging agents next to their photodynamic activity and drug delivery ability.


Nanostructures , Doxorubicin , Drug Carriers , Humans , Photochemotherapy , Titanium
10.
Chem Commun (Camb) ; 53(39): 5384-5387, 2017 May 11.
Article En | MEDLINE | ID: mdl-28462977

New PEG-stabilized CuNP catalysts are designed upon Cu(ii) reduction with sodium naphthalenide in MeCN followed by simple purification using the salting-out effect. Their catalytic activity in CuAAC is boosted upon 30 min exposure to air, producing Cu2O NPs. These NPs are also supported on SBA-15, providing excellent recyclable heterogeneous catalysts that are applied in low amounts for efficient "click" functionalization.

11.
Langmuir ; 33(35): 8774-8783, 2017 09 05.
Article En | MEDLINE | ID: mdl-28502180

Recent studies have shown that layered silicate clays can be used to form a nacre-like bioinspired layered structure with various polymer fillers, leading to composite films with good material strength, gas-barrier properties, and high loading capacity. We go one step further by in situ growing metal nanoparticles in nacre-like layered films based on layered silicate clays, which can be used for applications in plasmonic sensing and catalysis. The degree of anisotropy of the nanoparticles grown in the film can be controlled by adjusting the ratio of clay to polymer or gold to clay and reducing agent concentration, as well as silver overgrowth, which greatly enhances the surface enhanced Raman scattering activity of the composite. We show the performance of the films for SERS detection of bacterial quorum sensing molecules in culture medium, and catalytic properties are demonstrated through the reduction of 4-nitroaniline. These films serve as the first example of seedless, in situ nanoparticle growth within nacre-mimetic materials, and open the path to basic research on the influence of different building blocks and polymeric mortars on nanoparticle morphology and distribution, as well as applications in catalysis, sensing, and antimicrobial surfaces using such materials.


Metal Nanoparticles , Catalysis , Clay , Nacre , Polymers
12.
J Phys Chem B ; 121(5): 1158-1167, 2017 02 09.
Article En | MEDLINE | ID: mdl-28084736

The impact of polyanions on the formation of lipid bilayers on top of polyelectrolyte multilayers (PEMs) with poly(allylamine hydrochloride) (PAH) as the top layer is studied for the deposition of vesicles of mixed lipid composition, 50:50 molar ratio of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and negatively charged 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS). PEMs are assembled with polystyrene sulfonate (PSS), poly(acrylic acid) (PAA), and alginic acid sodium salt (Alg) as polyanions. The assembly of the vesicles on the PEMs is followed by means of the quartz crystal microbalance with dissipation. Fluorescence recovery after photobleaching measurements are applied to evaluate bilayer formation. Whereas a bilayer is formed on top of PAH/PSS multilayers, the vesicles are adsorbed on top of PAH/Alg and PAH/PAA multilayers, remaining unruptured or only partially fused. The influence of the surface composition of the PEM and of the bulk properties of the film are analyzed. The phosphate ions present in phosphate-buffered saline (PBS) play a fundamental role in bilayer formation on top of PAH/PSS as they complex with PAH and render the surface potential close to zero. For PAH/PAA and PAH/Alg, PBS renders the surface negative. X-ray photoelectron spectroscopy shows that the dibasic phosphate ions from PBS complex preferentially with PAH in PAH/PAA and PAH/Alg multilayers, whereas monobasic phosphates complex with PAH in PAH/PSS. An explanation for the absence of bilayer formation on PAH/PAA and PAH/Alg is given on the basis of the different affinities of phosphate ions for PAH in combination with the different polyanions.

13.
ChemSusChem ; 10(7): 1616-1623, 2017 04 10.
Article En | MEDLINE | ID: mdl-28106342

Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (Mn+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate Mn+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of Mn+ on oxygen reduction. A case study on the Na-O2 system is described in detail. Among other things, the Na+ concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided.


Ionic Liquids/chemistry , Oxygen/chemistry , Sodium/chemistry , Electric Power Supplies , Electrochemistry , Electrodes , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Quantum Theory
14.
ACS Omega ; 2(8): 4548-4555, 2017 Aug 31.
Article En | MEDLINE | ID: mdl-31457747

Inorganic-organic hybrid mesoporous silica thin films with covalently bonded carboxylic acid groups were synthesized in a one-step procedure, using carboxylic-derivatized alkoxysilanes obtained by photochemical radical thiol-ene addition (PRTEA). The organosilanes were synthesized by clicking mercaptosuccinic or mercaptoacetic thioacids with vinyltrimethoxysilane, using benzophenone as the photoradical initiator. The films were synthesized by evaporation-induced self-assembly of a sol containing a mixture of tetraethoxysilane and different quantities of the organosilanes, without any further treatment after the PRTEA reaction. Two nonionic surfactants were used as templates to produce different pore sizes. Different aging times were also applied. Structural characterization with electron microscopy, porosimetry measurements, and small angle X-ray scattering with two-dimensional detection demonstrated the obtention of mesoporous phases whose degree of ordering depended on the amount of added organosilane. The incorporation of the functional silanes was shown by X-ray photoelectron spectroscopy, and the presence of the COOH groups was confirmed by Fourier transform infrared (FTIR). Finally, the availability of the COOH groups for further chemical modification was demonstrated by FTIR by following the changes in the typical carbonyl IR bands during proton exchange and metal complexation. The proposed simple methodology allows obtaining COOH-modified silica thin films in one step, without the need of hard reaction conditions or deprotection steps. Functionalization with carboxyl groups brings a pH-dependent switch-ability to the pore surface that can be used for multifunctional mesoporous materials design.

15.
Chem Commun (Camb) ; 53(3): 644-646, 2017 01 03.
Article En | MEDLINE | ID: mdl-27990528

A new α-Fe2O3 nanocluster/graphene oxide catalyst is found to be efficient in parts-per-million for Suzuki-Miyaura coupling and 4-nitrophenol reduction in aqueous solution, and this catalyst is recycled at least 4 times in good yields.

16.
J Phys Chem Lett ; 6(2): 230-8, 2015 Jan 15.
Article En | MEDLINE | ID: mdl-26263455

We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.


Cellulose/chemistry , Metal Nanoparticles/chemistry , Palladium/chemistry , Boronic Acids/chemistry , Catalysis , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Static Electricity
17.
ACS Appl Mater Interfaces ; 7(11): 6351-8, 2015 Mar 25.
Article En | MEDLINE | ID: mdl-25738650

One of the key challenges in engineering of orthopedic implants is to "bioactivate" their surface by using different surface techniques and materials. Carbon, especially amorphous (a-C) and diamond-like carbon down (DLC) films have attracted much attention in biomedical fields due to their biocompatibility and low coefficient of friction. However, they are unsuitable for uses as a "bioactivity enhancer" of orthopedic implants due to their bioinertness. In this work, we use the nonreactive magnetron sputtering technique to produce a-C films including the biocompatible niobium (Nb) element to alter the surface chemistry and nanotopography of the a-C films with the purpose of bioactivating the a-C film coated implants. Results show that the nanocomposite films (Nb-C) formed by the addition of Nb into the a-C films not only have improved corrosion resistance, but also possess enhanced mechanical properties (nanohardness, Young's modulus and superelastic recovery). Preosteoblasts (MC3T3-E1) cultured on the Nb-C films have enhanced adhesion and upregulated alkaline phosphatase (ALP) activity, compared to those cultured on the a-C film and TiO2 films used as a control, which are thought to be ascribed to the combined effects of the changes in surface chemistry and the refinement of the nanotopography caused by the addition of Nb.


Bone Substitutes/chemical synthesis , Carbon/chemistry , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Niobium/chemistry , Osteoblasts/physiology , 3T3 Cells , Animals , Biocompatible Materials/chemical synthesis , Cell Proliferation/physiology , Cell Survival/physiology , Compressive Strength , Elastic Modulus , Hardness , Materials Testing , Membranes, Artificial , Mice , Osteoblasts/cytology , Surface Properties , Tensile Strength
18.
Chem Commun (Camb) ; 51(42): 8753-6, 2015 May 25.
Article En | MEDLINE | ID: mdl-25704159

We report a selective method to make functional bio-inorganic materials by mineralizing cobalt-phosphate in the presence of His-tagged enzymes. We have demonstrated that the His-tag drives the biomineralization forming sponge-like structures where both inorganic and biological elements co-localize. The bio-inorganic catalysts were re-used for several redox reaction cycles demonstrating their potential to be used in synthetic chemistry.


Alcohol Dehydrogenase/metabolism , Biocatalysis , Cobalt/metabolism , Histidine/metabolism , Phosphates/metabolism , Alcohol Dehydrogenase/chemistry , Cobalt/chemistry , Geobacillus stearothermophilus/enzymology , Histidine/chemistry , Lactococcus lactis/enzymology , Oxidation-Reduction , Particle Size , Phosphates/chemistry , Surface Properties , Zinc/chemistry , Zinc/metabolism
19.
Anal Chem ; 87(1): 431-40, 2015 Jan 06.
Article En | MEDLINE | ID: mdl-25411795

Due to their electrical conductivity and optical transparency, slides coated with a thin layer of indium tin oxide (ITO) are the standard substrate for protein imaging mass spectrometry on tissue samples by MALDI-TOF MS. We have now studied the rf magnetron sputtering deposition parameters to prepare ITO thin films on glass substrates with the required nanometric surface structure for their use in the matrix-free imaging of metabolites and small-molecule drugs, without affecting the transparency required for classical histology. The custom-made surfaces were characterized by atomic force microscopy, scanning electron microscopy, ellipsometry, UV, and laser desorption ionization MS (LDI-MS) and employed for the LDI-MS-based analysis of glycans and druglike molecules, the quantification of lactose in milk by isotopic dilution, and metabolite imaging on mouse brain tissue samples.


Image Processing, Computer-Assisted/methods , Metabolomics , Nanostructures/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tin Compounds/chemistry , Animals , Brain/metabolism , Humans , Isotope Labeling , Lactose/analysis , Lasers , Mice , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Milk/chemistry , Pharmaceutical Preparations/analysis , Photoelectron Spectroscopy , Polysaccharides/analysis
20.
ACS Nano ; 8(6): 6221-31, 2014 Jun 24.
Article En | MEDLINE | ID: mdl-24811229

Cellulose-based materials are widely used in analytical chemistry as platforms for chromatographic and immunodiagnostic techniques. Due to its countless advantages (e.g., mechanical properties, three-dimensional structure, large surface to volume area, biocompatibility and biodegradability, and high industrial availability), paper has been rediscovered as a valuable substrate for sensors. Polymeric materials such as cellulosic paper present high protein capture ability, resulting in a large increase of detection signal and improved assay sensitivity. However, cellulose is a rather nonreactive material for direct chemical coupling. Aiming at developing an efficient method for controlled conjugation of cellulose-based materials with proteins, we devised and fabricated a hybrid scaffold based on the adsorption and in situ self-assembly of surface-oxidized Ni nanoparticles on filter paper, which serve as "docking sites" for the selective immobilization of proteins containing polyhistidine tags (His-tag). We demonstrate that the interaction between the nickel substrate and the His-tagged protein G is remarkably resilient toward chemicals at concentrations that quickly disrupt standard Ni-NTA and Ni-IDA complexes, so that this system can be used for applications in which a robust attachment is desired. The bioconjugation with His-tagged protein G allowed the binding of anti-Salmonella antibodies that mediated the immuno-capture of live and motile Salmonella bacteria. The versatility and biocompatibility of the nickel substrate were further demonstrated by enzymatic reactions.


Biocompatible Materials/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Nickel/chemistry , Adsorption , Binding Sites , Cellulose/chemistry , Chromatography , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Escherichia coli/metabolism , Histidine/chemistry , Immobilized Proteins/chemistry , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Polymers/chemistry , Salmonella/metabolism , Surface Properties
...