Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biol Res ; 55(1): 38, 2022 Dec 09.
Article En | MEDLINE | ID: mdl-36494836

BACKGROUND: Excitotoxicity-induced in vivo injury models are vital to reflect the pathophysiological features of acute spinal cord injury (SCI) in humans. The duration and concentration of chemical treatment controls the extent of neuronal cell damage. The extent of injury is explained in relation to locomotor and behavioural activity. Several SCI in vivo methods have been reported and studied extensively, particularly contusion, compression, and transection models. These models depict similar pathophysiology to that in humans but are extremely expensive (contusion) and require expertise (compression). Chemical excitotoxicity-induced SCI models are simple and easy while producing similar clinical manifestations. The kainic acid (KA) excitotoxicity model is a convenient, low-cost, and highly reproducible animal model of SCI in the laboratory. The basic impactor approximately cost between 10,000 and 20,000 USD, while the kainic acid only cost between 300 and 500 USD, which is quite cheap as compared to traditional SCI method. METHODS: In this study, 0.05 mM KA was administered at dose of 10 µL/100 g body weight, at a rate of 10 µL/min, to induce spinal injury by intra-spinal injection between the T12 and T13 thoracic vertebrae. In this protocol, detailed description of a dorsal laminectomy was explained to expose the spinal cord, following intra-spinal kainic acid administration at desired location. The dose, rate and technique to administer kainic acid were explained extensively to reflect a successful paraplegia and spinal cord injury in rats. The postoperative care and complication post injury of paraplegic laboratory animals were also explained, and necessary requirements to overcome these complications were also described to help researcher. RESULTS: This injury model produced impaired hind limb locomotor function with mild seizure. Hence this protocol will help researchers to induce spinal cord injury in laboratories at extremely low cost and also will help to determine the necessary supplies, methods for producing SCI in rats and treatments designed to mitigate post-injury impairment. CONCLUSIONS: Kainic acid intra-spinal injection at the concentration of 0.05 mM, and rate 10 µL/min, is an effective method create spinal injury in rats, however more potent concentrations of kainic acid need to be studied in order to create severe spinal injuries.


Spinal Cord Injuries , Spinal Injuries , Humans , Rats , Animals , Rats, Sprague-Dawley , Kainic Acid/therapeutic use , Paraplegia/complications , Spinal Injuries/complications , Disease Models, Animal
2.
Int J Mol Sci ; 21(20)2020 Oct 13.
Article En | MEDLINE | ID: mdl-33066029

Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Its pathophysiology comprises acute and chronic phases and incorporates a cascade of destructive events such as ischemia, oxidative stress, inflammatory events, apoptotic pathways and locomotor dysfunctions. Many therapeutic strategies have been proposed to overcome neurodegenerative events and reduce secondary neuronal damage. Efforts have also been devoted in developing neuroprotective and neuro-regenerative therapies that promote neuronal recovery and outcome. Although varying degrees of success have been achieved, curative accomplishment is still elusive probably due to the complex healing and protective mechanisms involved. Thus, current understanding in this area must be assessed to formulate appropriate treatment modalities to improve SCI recovery. This review aims to promote the understanding of SCI pathophysiology, interrelated or interlinked multimolecular interactions and various methods of neuronal recovery i.e., neuroprotective, immunomodulatory and neuro-regenerative pathways and relevant approaches.


Spinal Cord Injuries/metabolism , Spinal Cord Regeneration , Spinal Cord/metabolism , Animals , Humans , Spinal Cord/pathology , Spinal Cord/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
...