Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Ren Fail ; 46(1): 2338565, 2024 Dec.
Article En | MEDLINE | ID: mdl-38622926

Background: Renal hypoxia plays a key role in the progression of chronic kidney disease (CKD). Shen Shuai II Recipe (SSR) has shown good results in the treatment of CKD as a common herbal formula. This study aimed to explore the effect of SSR on renal hypoxia and injury in CKD rats. Methods: Twenty-five Wistar rats underwent 5/6 renal ablation/infarction (A/I) surgery were randomly divided into three groups: 5/6 (A/I), 5/6 (A/I) + losartan (LOS), and 5/6 (A/I) + SSR groups. Another eight normal rats were used as the Sham group. After 8-week corresponding interventions, blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) was performed to evaluate renal oxygenation in all rats, and biochemical indicators were used to measure kidney and liver function, hemoglobin, and proteinuria. The expression of fibrosis and hypoxia-related proteins was analyzed using immunoblotting examination. Results: Renal oxygenation, evaluated by BOLD-fMRI as cortical and medullary T2* values (COT2* and MET2*), was decreased in 5/6 (A/I) rats, but increased after SSR treatment. SSR also downregulated the expression of hypoxia-inducible factor-1α (HIF-1α) in 5/6 (A/I) kidneys. With the improvement of renal hypoxia, renal function and fibrosis were improved in 5/6 (A/I) rats, accompanied by reduced proteinuria. Furthermore, the COT2* and MET2* were significantly positively correlated with the levels of creatinine clearance rate (Ccr) and hemoglobin, but negatively associated with the levels of serum creatinine (SCr), blood urea nitrogen (BUN), serum cystatin C (CysC), serum uric acid (UA), 24-h urinary protein (24-h Upr), and urinary albumin:creatinine ratio (UACR). Conclusion: The degree of renal oxygenation reduction is correlated with the severity of renal injury in CKD. SSR can improve renal hypoxia to attenuate renal injury in 5/6 (A/I) rats of CKD.


Renal Insufficiency, Chronic , Uric Acid , Rats , Animals , Creatinine/metabolism , Uric Acid/pharmacology , Rats, Sprague-Dawley , Rats, Wistar , Kidney , Ischemia , Infarction/metabolism , Infarction/pathology , Hypoxia/drug therapy , Hypoxia/metabolism , Hypoxia/pathology , Fibrosis , Proteinuria/pathology , Magnetic Resonance Imaging/methods , Hemoglobins/metabolism
2.
Ren Fail ; 46(1): 2338566, 2024 Dec.
Article En | MEDLINE | ID: mdl-38655870

OBJECTIVE: Shenkang injection (SKI) has been widely used in China for many years for the treatment of kidney disease. The objective of this systematic review was to assess the efficacy of Shenkang injection for the treatment of acute kidney injury (AKI). METHODS: A search was conducted across seven databases, encompassing data from the inception of each database through October 8th, 2023. Randomized controlled trials comparing SKI-treated AKI patients with control subjects were extracted. The main outcome measure was serum creatinine (SCr) levels. Secondary outcomes included blood urea nitrogen (BUN), serum cystatin C (CysC), 24-h urine protein (24 h-Upro) levels, APACHE II score and adverse reactions. RESULTS: This meta-analysis included eleven studies, and the analysis indicated that, compared with the control group, SKI significantly decreased SCr [WMD = -23.31, 95% CI (-28.06, -18.57); p < 0.001]; BUN [WMD = -2.07, 95% CI (-2.56, -1.57); p < 0.001]; CysC [WMD = -0.55, 95% CI (-0.78, -0.32), p < 0.001]; 24-h urine protein [WMD = -0.43, 95% CI (-0.53, -0.34), p < 0.001]; and the APACHE II score [WMD = -3.07, 95% CI (-3.67, -2.48), p < 0.001]. There was no difference in adverse reactions between the SKI group and the control group [RR = 1.32, 95% CI (0.66, 2.63), p = 0.431]. CONCLUSION: The use of SKI in AKI patients may reduce SCr, BUN, CysC, 24-h Upro levels, and APACHE II scores in AKI patients. The incidence of adverse reactions did not differ from that in the control group. Additional rigorous clinical trials will be necessary in the future to thoroughly evaluate and establish the effectiveness of SKI in the treatment of AKI.


Acute Kidney Injury , Blood Urea Nitrogen , Creatinine , Drugs, Chinese Herbal , Randomized Controlled Trials as Topic , Humans , Acute Kidney Injury/drug therapy , APACHE , Creatinine/blood , Cystatin C/blood , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/adverse effects , Injections , Treatment Outcome
3.
Cancer Discov ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38588399

Alterations in the RAS-MAPK signaling cascade are common across multiple solid tumor types and is a driver for many cancers. NST-628 is a potent pan-RAF-MEK molecular glue that prevents phosphorylation and activation of MEK by RAF, overcoming the limitations of traditional RAS-MAPK inhibitors and leading to deep durable inhibition of the pathway. Cellular, biochemical, and structural analysis of RAF-MEK complexes show that NST-628 engages all isoforms of RAFand prevents the formation of BRAF-CRAF heterodimers, a differentiated mechanism from all current RAF inhibitors. With a potent and durable inhibition of the RAF-MEK signaling complex as well as high intrinsic permeability into the brain, NST-628 demonstrates broad efficacy in cellular and patient-derived tumor models harboring diverse MAPK pathway alterations, including orthotopic intracranial models. Given its functional and pharmacokinetic mechanisms that are differentiated from previous therapies , NST-628 is positioned to make an impact clinically in an areas of unmet patient need.

4.
Biomol Biomed ; 2024 Mar 24.
Article En | MEDLINE | ID: mdl-38526448

This study aims to explore the relationships between renal function, hypoxia, and oxidative stress in chronic kidney disease (CKD). Seventy-six non-dialysis patients with CKD stages 1-5 and eight healthy subjects were included in the clinical research. They were divided into three groups: healthy subjects, CKD stages 1-3, and CKD stages 4-5. In the animal study, 16 rat models of CKD were established through 5/6 renal ablation/infarction (A/I) surgery, and 8 normal rats were split into 3 groups: Sham, CKD, and losartan groups. Blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) was used to measure cortical and medullary T2* values (COT2* and MET2*) in all subjects and rats to evaluate renal oxygenation. Biochemical indicators were used to assess renal function and antioxidant capacity. Furthermore, the effects of losartan on renal fibrosis, hypoxia, and oxidative stress were examined using immunoblotting, colorimetric, and fluorometric assays. The results demonstrated significant positive associations between COT2* and MET2* with estimated glomerular filtration rate (eGFR). Patients with CKD stages 4-5 showed significantly lower serum superoxide dismutase (SOD) levels, which also had positive correlations with eGFR, COT2*, and MET2*. Furthermore, losartan treatment resulted in improved renal function and fibrosis, leading to increased levels of COT2*, MET2*, and SOD levels in 5/6 A/I rats. This was accompanied by reduced levels of hypoxia-inducible factor-1 alpha (HIF-1α) and malondialdehyde. Furthermore, losartan restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and suppressed the expression of Kelch-like ECH-associated protein 1 (Keap1) in 5/6 A/I kidneys. The study indicates that decline in renal oxygenation and antioxidant capacity is associated with the severity of renal failure in CKD. Losartan can potentially alleviate renal hypoxia and oxidative stress in the treatment of CKD via Keap1-Nrf2/HO-1 pathway.

5.
Phytother Res ; 38(2): 839-855, 2024 Feb.
Article En | MEDLINE | ID: mdl-38081477

Renal interstitial fibrosis (RIF) is the main pathological basis for the progression of chronic kidney disease (CKD), however, effective interventions are limited. Here, we investigated the effect of Icariside II (ICA-II) on RIF and explored the underlying mechanisms. Rats receiving 5/6 ablation and infarction (A/I) surgery were gavaged with ICA-II (5 or 10 mg/kg) for 8 weeks. In vitro, TGF-ß1-stimulated NRK-52E cells were treated with ICA-II and (or) oleic acid, etomoxir, ranolazine, fenofibrate, and GW6471. The effects of ICA-II on RIF, fatty acid oxidation, lipid deposition, and mitochondrial function were determined by immunoblotting, Oil red O staining, colorimetric, and fluorometric assays. Using adeno-associated virus injection and co-culture methods, we further determined mechanisms of ICA-II anti-RIF. ICA-II ameliorated the fibrotic responses in vivo and in vitro. RNA-seq analysis indicated that ICA-II regulated fatty acid degradation and PPAR pathway in 5/6 (A/I) kidneys. ICA-II attenuated lipid accumulation and up-regulated expression of PPARα, CPT-1α, Acaa2, and Acadsb proteins in vivo and in vitro. Compared to ICA-II treatment, ICA-II combined with Etomoxir exacerbated mitochondrial dysfunction and fibrotic responses in TGF-ß-treated NRK-52E cells. Importantly, we determined that ICA-II improved lipid metabolism, fatty acid oxidation, mitochondrial function, and RIF by restoring PPARα. Co-culture revealed that ICA-II decreased the expression of Fibronectin, Collagen-I, α-SMA, and PCNA proteins in NRK-49F cells by restoring PPARα of renal tubular cells. ICA-II may serve as a promising therapeutic agent for RIF in 5/6 (A/I) rats, which may be important for the prevention and treatment of CKD.


Epoxy Compounds , Flavonoids , Kidney Diseases , Renal Insufficiency, Chronic , Rats , Animals , PPAR alpha/metabolism , Cell Line , Kidney Diseases/drug therapy , Kidney , Transforming Growth Factor beta1/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Fatty Acids/pharmacology , Lipid Metabolism , Fibrosis , Lipids
6.
Front Biosci (Landmark Ed) ; 28(6): 121, 2023 06 27.
Article En | MEDLINE | ID: mdl-37395021

BACKGROUND: Salvianolic acid C (SAC) is a natural compound derived from Salvia miltiorrhiza that can protect against renal diseases. The aims of this work were to explore the effect of SAC on kidney tubulointerstitial fibrosis and study the associated mechanism. METHODS: Models for unilateral ureteral obstruction (UUO) and aristolochic acid I (AAI) were established in mice to study renal tubulointerstitial fibrosis. Rat kidney fibroblasts (NRK-49F) and human kidney epithelial cells (HK2) were used as cellular models to evaluate the effects of SAC on kidney fibrosis. RESULTS: Treatment with SAC for two weeks reduced the level of renal tubulointerstitial fibrosis in UUO- and AAI-induced fibrotic kidneys, as demonstrated by Masson's staining and Western blot. SAC inhibited extracellular matrix protein expression in NRK-49F cells and TGF-ß-stimulated HK2 cells in dose-dependent fashion. Moreover, SAC inhibited the expression of epithelial-mesenchymal transition (EMT) factors in animal and cellular models of kidney fibrosis, as well as the EMT-related transcription factor snail. Furthermore, SAC inhibited the fibrosis-related signaling pathway Smad3 in the fibrotic kidneys of two mouse models and in renal cells. CONCLUSIONS: We conclude that SAC inhibits EMT and ameliorates tubulointerstitial fibrosis through involvement of the signaling pathway for transforming growth factor-ß (TGF-ß)/Smad.


Kidney Diseases , Ureteral Obstruction , Rats , Mice , Humans , Animals , Epithelial-Mesenchymal Transition , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Transforming Growth Factor beta/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Fibrosis , Transforming Growth Factor beta1/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3839-3847, 2023 Jul.
Article Zh | MEDLINE | ID: mdl-37475075

The purpose of this study was to investigate the effect of notoginsenoside R_1(NGR_1) on alleviating kidney injury by regulating renal oxidative stress and the Nrf2/HO-1 signaling pathway in mice with IgA nephropathy(IgAN) and its mechanism. The mouse model of IgAN was established using a variety of techniques, including continuous bovine serum albumin(BSA) gavage, subcutaneous injections of carbon tetrachloride(CCl_4) castor oil, and tail vein injections of lipopolysaccharide(LPS). After successful modeling, mice with IgAN were randomly separated into a model group, low, medium, and high-dose NGR_1 groups, and a losartan group, and C57BL6 mice were utilized as normal controls. The model and normal groups were given phosphate buffered saline(PBS) by gavage, the NGR_1 groups were given varying dosages of NGR_1 by gavage, and the losartan group was given losartan by gavage for 4 weeks. The 24-hour urine of mice was collected after the last administration, and serum and kidney tissues of mice were taken at the end of the animal experiment. Then urine red blood cell count(URBCC), 24-hour urine protein(24 h protein), serum creatinine(Scr), and blood urea nitrogen(BUN) levels were measured. The enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of galactose-deficient IgA1(Gd-IgA1), kidney injury molecule 1(Kim-1), and neutropil gelatinase-associated lipocalin(NGAL) in the mouse serum. The assay kits were used to detect the levels of malondialdehyde(MDA) and superoxide dismutase(SOD), and immunofluorescence(IF) was used to detect the expression level of glutathione peroxidase 4(GPX4) in the mesangial region. Western blot was used to detect the protein expression of nuclear transcription factor E2 related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathway in the renal tissue. Hematoxylin-eosin(HE) staining was used to observe pathological alterations in the glomerulus of mice. The results revealed that, as compared with the model group, the serum Gd-IgA1 level, URBCC, 24 h protein level, renal damage markers(Kim-1 and NGAL) in the high-dose NGR_1 group decreased obviously and renal function indicators(BUN, Scr) improved significantly. The activity of SOD activity and expression level of GPX4 increased significantly in the high-dose NGR_1 group, whereas the expression level of MDA reduced and protein expression levels of Nrf2 and HO-1 increased. Simultaneously, HE staining of the renal tissue indicated that glomerular damage was greatly decreased in the high-dose NGR_1 group. In conclusion, this study has clarified that NGR_1 may alleviate the kidney injury of mice with IgAN by activating the Nrf2/HO-1 signaling pathway, improving antioxidant capacity, and reducing the level of renal oxidative stress.


Glomerulonephritis, IGA , Mice , Animals , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/pathology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Losartan/metabolism , Losartan/pharmacology , Lipocalin-2/metabolism , Lipocalin-2/pharmacology , Mice, Inbred C57BL , Kidney/physiology , Signal Transduction , Oxidative Stress , Superoxide Dismutase/metabolism
8.
Arch Med Sci ; 19(3): 724-735, 2023.
Article En | MEDLINE | ID: mdl-37313187

Introduction: STAT4 is a transcriptional regulator that has been reported to have oncogenic activities in various cancers. In our study, the posttranscriptional regulatory effect of miR-200a-3p on STAT4 and the prognostic significance of miR-200a-3p and STAT4 were evaluated in bladder cancer (BCa). Material and methods: Proliferation and apoptosis of BCa cell lines were monitored using CCK-8 and Annexin V-FITC assays, respectively. Gene and protein expression levels in BCa tissues and cells were detected using RT-qPCR and western blotting, respectively. Results: Significant downregulation of miR-200a-3p and upregulation of STAT4 were observed in BCa tissues and cells compared with the corresponding non-tumor adjacent tissues. Both STAT4 and miR-200a-3p were validated as independent prognostic indicators in sixty-nine BCa patients for predicting overall survival and disease-free survival. In vitro experimental analyses revealed that knockdown of STAT4 repressed BCa cell growth and elevated cell apoptosis. Molecular interactive analysis revealed STAT4 as a direct target of miR-200a-3p, which could suppress STAT4 protein expression by posttranscriptional repression. Cotransfection of miR-200a-3p mimics and STAT4 overexpression plasmids into BCa cells demonstrated that the antineoplastic activities of miR-200a-3p in vitro were neutralized by overexpressed STAT4. Conclusions: The miR-200a-3p/STAT4 signaling cascade plays an important role in the progression of BCa, which provides a new promising target for targeted BCa therapies.

9.
J Transl Med ; 21(1): 326, 2023 05 16.
Article En | MEDLINE | ID: mdl-37194066

BACKGROUND: Renal tubulointerstitial fibrosis is the hallmark of various chronic kidney diseases. Symmetric dimethylarginine (SDMA) is an independent cardiovascular risk factor in patients with chronic kidney diseases, which is mostly excreted through renal tubules. However, the effect of SDMA on kidneys in a pathological condition is currently unknown. In this study, we investigated the role of SDMA in renal tubulointerstitial fibrosis and explored its underlying mechanisms. METHODS: Mouse unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI) models were established to study renal tubulointerstitial fibrosis. SDMA was injected into kidneys through ureter retrogradely. TGF-ß stimulated human renal epithelial (HK2) cells were used as an in vitro model and treated with SDMA. Signal transducer and activator of transcription-4 (STAT4) was inhibited by berbamine dihydrochloride or siRNA or overexpressed by plasmids in vitro. Masson staining and Western blotting were performed to evaluate renal fibrosis. Quantitative PCR was performed to validate findings derived from RNA sequencing analysis. RESULTS: We observed that SDMA (from 0.01 to 10 µM) dose-dependently inhibited the expression of pro-fibrotic markers in TGF-ß stimulated HK2 cells. Intrarenal administration of SDMA (2.5 µmol/kg or 25 µmol/kg) dose-dependently attenuated renal fibrosis in UUO kidneys. A significant increase in SDMA concentration (from 19.5 to 117.7 nmol/g, p < 0.001) in mouse kidneys was observed after renal injection which was assessed by LC-MS/MS. We further showed that intrarenal administration of SDMA attenuated renal fibrosis in UIRI induced mouse fibrotic kidneys. Through RNA sequencing analysis, we found that the expression of STAT4 was reduced by SDMA in UUO kidneys, which was further confirmed by quantitative PCR and Western blotting analysis in mouse fibrotic kidneys and renal cells. Inhibition of STAT4 by berbamine dihydrochloride (0.3 mg/ml or 3.3 mg/ml) or siRNA reduced the expression of pro-fibrotic markers in TGF-ß stimulated HK2 cells. Furthermore, blockage of STAT4 attenuated the anti-fibrotic effect of SDMA in TGF-ß stimulated HK2 cells. Conversely, overexpression of STAT4 reversed the anti-fibrotic effect of SDMA in TGF-ß stimulated HK2 cells. CONCLUSION: Taken together, our study indicates that renal SDMA ameliorates renal tubulointerstitial fibrosis through inhibition of STAT4.


Kidney Diseases , Renal Insufficiency, Chronic , Ureteral Obstruction , Humans , Mice , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , Kidney Diseases/complications , Kidney/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/genetics , Ureteral Obstruction/pathology , Renal Insufficiency, Chronic/pathology , Transforming Growth Factor beta/metabolism , Fibrosis , RNA, Small Interfering , Transforming Growth Factor beta1/metabolism , STAT4 Transcription Factor/metabolism
10.
Ren Fail ; 45(1): 2175590, 2023 Dec.
Article En | MEDLINE | ID: mdl-36856148

Background: Chronic kidney disease-associated pruritus (CKD-aP) is very common and sometimes refractory to treatment in hemodialysis patients. In a trial conducted in Japan, nalfurafine, effectively reduced itching of treatment-resistant CKD-aP. Our present bridging study aimed to evaluate the efficacy and safety of nalfurafine in Chinese cohort with refractory CKD-aP.Methods: In this phase III, multicenter bridging study conducted at 22 sites in China, 141 Chinese cases with refractory CKD-aP were randomly (2:2:1) assigned to receive 5 µg, 2.5 µg of nalfurafine or a placebo orally for 14 days in a double-blind manner. The primary end point was the mean decrease in the mean visual analogue scale (VAS) from baseline.Results: A total of 141 patients were included. The primary endpoint analysis based on full analysis set (FAS), the difference of mean VAS decrease between 5 µg nalfurafine and placebo group was 11.37 mm (p = .041); the difference of mean VAS decrease between 2.5 µg and placebo group was 8.81 mm, but not statistically significantly different. Both differences were greater than 4.13 mm, which met its predefined success criterion of at least 50% efficacy of the key Japanese clinical trial. The per protocol set (PPS) analysis got similar results. The incidence of adverse drug reactions (ADRs) was 49.1% in 5µg, 38.6% in 2.5 µg and 33.3% in placebo group. The most common ADR was insomnia, seen in 21 of the 114 nalfurafine patients.Conclusions: Oral nalfurafine effectively reduced itching with few significant ADRs in Chinese hemodialysis patients with refractory pruritus.


Drug-Related Side Effects and Adverse Reactions , Renal Insufficiency, Chronic , Humans , Renal Dialysis/adverse effects , Kidney , Renal Insufficiency, Chronic/complications , Pruritus/drug therapy , Pruritus/etiology
11.
J Ethnopharmacol ; 308: 116271, 2023 May 23.
Article En | MEDLINE | ID: mdl-36806483

ETHNOPHARMACOLOGICAL RELEVANCE: Shen Shuai II Recipe (SSR) is a traditional Chinese medicine prescription with significant clinical efficacy in chronic kidney disease (CKD) by invigorating Qi and resolving blood stasis, clearing away heat and dampness. Our previous studies demonstrated that SSR attenuated renal interstitial fibrosis (RIF) by improving hypoxia and mitochondrial dysfunction. AIM OF THE STUDY: The aim of this study was to investigate the potential mechanisms of SSR against RIF. MATERIALS AND METHODS: The CKD was established by 5/6 ablation/infarction (A/I) operation. After 4 weeks, rats were gavaged with SSR or Fenofibrate for 8 weeks. Hypoxia-treated NRK-52 E cells were treated with SSR and (or) glycolysis inhibitors, including GSK2837808 A (GSK) and 2-Deoxy-D-glucose (2-DG). In addition, Drp1-deficient or MFP-M1-treated NRK-52 E cells were treated with SSR under hypoxic conditions. The effects of SSR on fibrotic phenotype, glycolysis, mitochondrial dynamics and membrane potential in hypoxia-exposed NRK-52 E cells were examined by immunoblotting, colorimetric, and fluorometric methods. Furthermore, we constructed a lactic acid-induced activation model of NRK-49 F cells and a co-culture system. The activation of NRK-49 F cells was evaluated by immunoblotting method. RESULTS: Our findings indicated that SSR significantly attenuated abnormal glycolysis in vivo and in vitro, which was correlated with its renoprotective effect. Further studies revealed that improvement of mitochondrial dynamics could be one of the mechanisms by which SSR inhibits glycolysis to achieve anti-renal fibrosis. Furthermore, treatment with SSR significantly inhibited the lactic acid-induced activation of NRK-49 F cells. The co-culture results further highlighted that SSR inhibited activation of renal fibroblasts and deposition of extracellular matrix by reducing glycolysis in renal tubular cells. CONCLUSIONS: SSR alleviates RIF by inhibiting hypoxia-induced glycolysis through improvement of mitochondrial dynamics.


Kidney Diseases , Renal Insufficiency, Chronic , Rats , Animals , Mitochondrial Dynamics , Kidney Diseases/drug therapy , Kidney , Renal Insufficiency, Chronic/drug therapy , Glycolysis , Hypoxia/metabolism , Fibrosis
12.
Kidney Blood Press Res ; 48(1): 175-185, 2023.
Article En | MEDLINE | ID: mdl-36791684

INTRODUCTION: Chronic hypoxia is prevalent in chronic kidney disease (CKD), and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) provides noninvasive evaluation of renal oxygenation. This study aimed to explore the correlation of renal oxygenation evaluated by BOLD-MRI with renal function. METHODS: 97 non-dialysis patients with CKD stages 1-5 and healthy volunteers (HVs) were recruited in the study, all participants without diabetes. Based on their estimated glomerular filtration rate (eGFR), the patients were divided into two groups: CKD stages 1-3 (CKD 1-3) and CKD stages 4-5 (CKD 4-5). We measured cortical and medullary T2* (COT2* and MET2*) values in all participants by BOLD-MRI. Physiological indices were also recorded and compared among three groups. Correlation of T2* values with clinical characteristics was determined. RESULTS: The COT2* values were significantly higher than MET2* values in all participants. The COT2* and MET2* values of three groups were ranked as HV > CKD 1-3> CKD 4-5 (p < 0.0001). There were positive correlations between the COT2* values, MET2* values and eGFR, hemoglobin (r > 0.4, p < 0.01). The 24-h urinary protein (24-h Upr) showed weak correlation with the COT2* value (rs = -0.2301, p = 0.0265) and no correlation with the MET2* value (p > 0.05). Urinary microprotein, including urinary alpha1-microglobulin, urinary beta2-microglobulin (ß2-MG), and urinary retinol-binding protein (RBP), showed strong correlation with COT2* and MET2* values. According to the analysis of receiver operating characteristic curve, the optimal cut-points between HV and CKD 1-3 were "<61.17 ms" (sensitivity: 91.23%, specificity: 100%) for COT2* values and "<35.00 ms" (sensitivity: 77.19%, specificity: 100%) for MET2* values, whereas COT2* values ("<47.34 ms"; sensitivity: 90.00%, specificity: 92.98%) and MET2* values ("<25.09 ms"; sensitivity: 97.50%, specificity: 80.70%) between CKD 1-3 and CKD 4-5. CONCLUSION: The decline of renal oxygenation reflected on T2* values, especially in cortex, may be an effective diagnostic marker for early detection of CKD.


Oxygen , Renal Insufficiency, Chronic , Humans , Prospective Studies , Kidney/pathology , Magnetic Resonance Imaging/methods , Glomerular Filtration Rate
13.
Pharm Biol ; 61(1): 23-29, 2023 Dec.
Article En | MEDLINE | ID: mdl-36524761

CONTEXT: Salvianolic acid B (SAB) can alleviate renal fibrosis and improve the renal function. OBJECTIVE: To investigate the effect of SAB on renal tubulointerstitial fibrosis and explore its underlying mechanisms. MATERIALS AND METHODS: Male C57 mice were subjected to unilateral ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) for renal fibrosis indication. Vehicle or SAB (10 mg/kg/d, i.p.) were given consecutively for 2 weeks in UUO mice while 4 weeks in AAN mice. The serum creatinine (Scr) and blood urine nitrogen (BUN) were measured. Masson's trichrome staining and the fibrotic markers (FN and α-SMA) were used to evaluate renal fibrosis. NRK-49F cells exposed to 2.5 ng/mL TGF-ß were treated with SAB in the presence or absence of 20 µM 3-DZNep, an inhibitor of EZH2. The protein expression of EZH2, H3k27me3 and PTEN/Akt signaling pathway in renal tissue and NRK-49F cells were measured by Western blots. RESULTS: SAB significantly improved the levels of Scr by 24.3% and BUN by 35.7% in AAN mice. SAB reduced renal interstitial collagen deposition by 34.7% in UUO mice and 72.8% in AAN mice. Both in vivo and in vitro studies demonstrated that SAB suppressed the expression of FN and α-SMA, increased PTEN and decreased the phosphorylation of Akt, which were correlated with the down-regulation of EZH2 and H3k27me3. The inhibition of EZH2 attenuated the anti-fibrotic effects of SAB in NRK-49Fs. CONCLUSION: SAB might have therapeutic potential on renal fibrosis of CKD through inhibiting EZH2, which encourages further clinical trials.


Kidney Diseases , Animals , Male , Mice , Fibrosis/drug therapy , Fibrosis/pathology , Histones/metabolism , Kidney/drug effects , Kidney/pathology , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Benzofurans/pharmacology , Benzofurans/therapeutic use , Depsides/pharmacology , Depsides/therapeutic use , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/drug effects , PTEN Phosphohydrolase/metabolism
14.
Front Med (Lausanne) ; 9: 995917, 2022.
Article En | MEDLINE | ID: mdl-36177327

Mammalian protein arginine methyltransferase 3 (PRMT3) catalyzes the monomethylation and dimethylation of the arginine residues of proteins. The role of PRMT3 in renal fibrosis is currently unknown. We aimed to study the role of PRMT3 in renal fibrosis and explored its underlying mechanisms. Quantitative PCR analysis and Western blotting analysis showed that the expression of PRMT3 was up-regulated in unilateral ureteral obstruction (UUO) mouse kidneys. Knockout of Prmt3 gene enhanced interstitial fibrosis in UUO kidneys as shown by Masson staining and Western blotting analysis the expression of pro-fibrotic markers. The production of asymmetric dimethylarginine (ADMA) was increased in wide type UUO kidneys but not further increased in Prmt3 knockout UUO kidneys. Administration of exogeneous ADMA in UUO kidneys blocked the enhanced renal interstitial fibrosis in Prmt3 mutant mice. Moreover, genetic deletion of Prmt3 gene increased blood urea nitrogen levels and renal deposition of collagen in folic acid injected mice. We conclude that PRMT3 inhibits renal tubulointerstitial fibrosis through elevating renal ADMA levels.

15.
Exp Cell Res ; 419(1): 113281, 2022 10 01.
Article En | MEDLINE | ID: mdl-35839862

BACKGROUND: Acute kidney injury is a clinical syndrome with both high morbidity and mortality. However, the underlying molecular mechanism of AKI is still largely unknown. The role of SENP1 in AKI is unclear, while one of its substrates, HIF-1α possesses nephroprotective effect in AKI. Herein, this study aimed to reveal the role of SENP1/HIF-1α axis in AKI by using both cell and animal models. METHODS: We investigated the effects of AKI on SENP1 expression using clinical samples, and cisplatin-induced AKI model based on mice or HK-2 cells. The influence of SENP1 knockdown or over-expression on cisplatin-induced AKI was studied in vitro and in vivo. Following the exploration of the change in HIF-1α expression brought by AKI, the synergistic effects of SENP1 knockdown and HIF-1α over-expression on AKI were examined. RESULTS: The results showed the up-regulation of SENP1 in clinical specimens, as well as cell and animal models. The knockdown or over-expression of SENP1 in HK-2 cells could promote or inhibit AKI through regulating cell apoptosis, respectively. Moreover, SENP1+/- mice suffered from much more serious AKI compared with mice in wild type group. Furthermore, we found that HIF-1α over-expression could attenuate the promoted cell apoptosis as well as AKI induced by SENP1 knockdown. CONCLUSIONS: we showed that SENP1 provided protection for kidney in AKI via regulating cell apoptosis and through the regulation of HIF-1α. This study could benefit for the understanding of the pathogenesis of AKI and provide potential therapeutic target for AKI treatment.


Acute Kidney Injury , Cisplatin , Animals , Apoptosis , Cysteine Endopeptidases , Hypoxia-Inducible Factor 1, alpha Subunit , Kidney , Mice
16.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2170-2177, 2022 Apr.
Article Zh | MEDLINE | ID: mdl-35531733

This study aims to explore the effect of icariin(ICA) on mitochondrial dynamics in a rat model of chronic renal failure(CRF) and to investigate the molecular mechanism of ICA against renal interstitial fibrosis(RIF). CRF was induced in male Sprague-Dawley(SD) rats with 5/6(ablation and infarction, A/I) surgery(right kidney ablation and 2/3 infarction of the left kidney). Four weeks after surgery, the model rats were randomized into the following groups: 5/6(A/I) group, 5/6(A/I)+low-dose ICA group, and 5/6(A/I)+high-dose ICA group. Another 12 rats that received sham operation were randomly classified into 2 groups: sham group and sham+ICAH group. Eight weeks after treatment, the expression of collagen-Ⅰ(Col-Ⅰ), collagen-Ⅲ(Col-Ⅲ), mitochondrial dynamics-related proteins(p-Drp1 S616, p-Drp1 S637, Mfn1, Mfn2), and mitochondrial function-related proteins(TFAM, ATP6) in the remnant kidney tissues was detected by Western blot. The expression of α-smooth muscle actin(α-SMA) was examined by immunohistochemical(IHC) staining. The NRK-52 E cells, a rat proximal renal tubular epithelial cell line, were cultured in vitro and treated with ICA of different concentration. Cell viability was detected by CCK-8 assay. In NRK-52 E cells stimulated with 20 ng·mL~(-1) TGF-ß1 for 24 h, the effect of ICA on fibronectin(Fn), connective tissue growth factor(CTGF), p-Drp1 S616, p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 was detected by Western blot, and the ATP content and the mitochondrial morphology were determined. The 20 ng·mL~(-1) TGF-ß1-stimulated NRK-52 E cells were treated with or without 5 µmol·L~(-1) ICA+10 µmol·L~(-1) mitochondrial fusion promoter M1(MFP-M1) for 24 h and the expression of fibrosis markers Fn and CTGF was detected by Western blot. Western blot result showed that the levels of Col-Ⅰ, Col-Ⅲ, and p-Drp1 S616 were increased and the levels of p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 were decreased in 5/6(A/I) group compared with those in the sham group. The levels of Col-Ⅰ, Col-Ⅲ, and p-Drp1 S616 were significantly lower and the levels of p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 were significantly higher in ICA groups than that in 5/6(A/I) group. IHC staining demonstrated that for the expression of α-SMA in the renal interstitium was higher in the 5/6(A/I) group than in the sham group and that the expression in the ICA groups was significantly lower than that in the 5/6(A/I) group. Furthermore, the improvement in the fibrosis, mitochondrial dynamics, and mitochondrial function were particularly prominent in rats receiving the high dose of ICA. The in vitro experiment revealed that ICA dose-dependently inhibited the increase of Fn, CTGF, and p-Drp1 S616, increased p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6, elevated ATP content, and improved mitochondrial morphology of NRK-52 E cells stimulated by TGF-ß1. ICA combined with MFP-M1 further down-regulated the expression of Fn and CTGF in NRK-52 E cells stimulated by TGF-ß1 compared with ICA alone. In conclusion, ICA attenuated RIF of CRF by improving mitochondrial dynamics.


Kidney Failure, Chronic , Renal Insufficiency, Chronic , Animals , Female , Male , Rats , Adenosine Triphosphate/pharmacology , Fibrosis , Flavonoids , Infarction/metabolism , Infarction/pathology , Kidney , Mitochondrial Dynamics , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism
17.
Pharm Biol ; 60(1): 990-996, 2022 Dec.
Article En | MEDLINE | ID: mdl-35587919

CONTEXT: Diabetic kidney disease (DKD) is a devastating complication of diabetes. Renal functional deterioration caused by tubular injury is the primary change associated with this disease. Calycosin shows protective roles in various diseases. OBJECTIVES: This study explored the function and underlying mechanism of calycosin in DKD. MATERIALS AND METHODS: HK-2 cells were treated with 25 mM high glucose (HG) to establish a renal tubule injury cell model. Then, the viability of cells treated with 0, 5, 10, 20, 40 and 80 µM of calycosin was measured using Cell Counting Kit-8. For the in vivo model, db/db mice were treated with 10 and 20 mg/kg/day of calycosin; db/m mice served as controls. The histomorphology was analyzed via haematoxylin and eosin staining. RESULTS: HG-induced decreased expression of glutathione (491.57 ± 33.56 to 122.6 ± 9.78 µmol/mL) and glutathione peroxidase 4 (inhibition rate 92.3%) and increased expression of lactate dehydrogenase (3.85 ± 0.89 to 16.84 ± 2.18 U/mL), malondialdehyde (3.72 ± 0.66 to 18.2 ± 1.58 nmol/mL), lipid ROS (4.31-fold increase) and NCOA4 (7.69-fold increase). The effects induced by HG could be blocked by calycosin. Moreover, calycosin alleviated the HG-induced decrease of cell viability and the increase of lipid ROS, but erastin could block the effects caused by calycosin. The in vivo model showed that calycosin alleviated the renal injury caused by diabetes. DISCUSSION AND CONCLUSION: Calycosin has a protective effect on diabetic kidney disease; ferroptosis may be involved in this process.


Diabetes Mellitus , Diabetic Nephropathies , Ferroptosis , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Isoflavones , Lipids , Mice , Reactive Oxygen Species
18.
BMC Complement Med Ther ; 22(1): 110, 2022 Apr 19.
Article En | MEDLINE | ID: mdl-35439976

BACKGROUND: Tanshinone I (Tan-I), an ingredient of Salvia miltiorrhiza, displays protective effects in several disease models. We aim to study the effect of Tan-I on renal fibrosis and explore its underlining mechanism. METHODS: Rat renal fibroblasts (NRK-49F) were used as an in vitro model to study the effect of Tan-I. Mouse renal fibrosis model was induced by unilateral ureteral obstruction (UUO) or peritoneally injection of aristolochic acid I (AAI). RESULTS: We found that Tan-I dose-dependently inhibited the expression of pro-fibrotic markers in rat renal fibroblasts. Masson staining and Western blotting analysis showed that Tan-I treatment attenuated renal fibrosis in UUO or AAI induced fibrotic kidneys. RNA sequencing analysis identified inhibin beta-A (INHBA), a ligand of TGF-ß superfamily, as a downstream target of Tan-I in fibrotic kidneys, which were further verified by qPCR. Western blotting analysis showed that INHBA is up-regulated in UUO or AAI induced fibrotic kidneys and Tan-I reduced the expression of INHBA in fibrotic kidneys. Inhibition of INHBA by Tan-I was further confirmed in rat fibroblasts. Moreover, knockdown of INHBA reduced the expression of pro-fibrotic markers and abolished the ani-fibrotic effect of Tan-I in rat renal fibroblasts. CONCLUSIONS: We conclude that Tan-I attenuates fibrosis in fibrotic kidneys through inhibition of INHBA.


Abietanes , Inhibins , Kidney Diseases , Ureteral Obstruction , Animals , Female , Humans , Male , Mice , Rats , Abietanes/pharmacology , Disease Models, Animal , Down-Regulation , Fibrosis , Inhibins/genetics , Inhibins/metabolism , Kidney/pathology , Kidney Diseases/drug therapy , Ureteral Obstruction/pathology
19.
Chin Med ; 17(1): 49, 2022 Apr 20.
Article En | MEDLINE | ID: mdl-35443733

BACKGROUND: We aim to study the clinical effect of moxibustion at Laogong interval with Panax notoginseng on the short-term maturation and long-term patency of arteriovenous fistula. METHODS: Seventy-four pre-dialysis uremic patients who received distal forearm radial-cephalic fistula creations were enrolled in this study and randomly assigned to the control group and experimental group. After arteriovenous fistula creations, the control group underwent handgrip exercise, and the experimental group received moxibustion at Laogong acupoint interval with Panax notoginseng. Both groups received a 12-week treatment and were followed up for 24 weeks in all at the following time points: before creations and 2, 4, 8, 12, 24 weeks after creations. The diameter of anastomosis, the diameter and outflow of draining-veins 5 cm above anastomosis, the diameter and outflow of brachial arteries evaluated the maturation and patency of arteriovenous fistula. Enzyme linked immunosorbent assay determined serum levels of endothelin and nitric oxide. RESULTS: The maturity rate in the experimental group was significantly higher than that in the control group at 4 weeks after arteriovenous fistula creations (P = 0.048). The diameter of anastomosis, the diameter of draining veins, and the blood flow of draining veins increased in both groups during the whole 24 weeks. The diameter and blood flow of brachial arteries ascended in both groups during the previous 12 weeks. Compared with the control group, moxibustion at Laogong interval with Panax notoginseng significantly improved the value of the diameter of draining-veins (P = 0.016), the blood flow of draining-veins (P = 0.015), the diameter of brachial arteries (P < 0.001), and the blood flow of brachial arteries (P = 0. 012) at 2 weeks, and enhanced the blood flow of draining-veins (P = 0.029) and brachial arteries (P < 0.001) at 12 weeks. Serum levels of endothelin were significantly lower (P = 0.047), and serum levels of nitric oxide were markedly higher (P < 0.001) in the experimental group than that in the control group at 2 weeks after creations. CONCLUSIONS: Moxibustion at Laogong interval with Panax notoginseng was non-invasive and promoted the maturation of arteriovenous fistula at 4 weeks after creations. However, its long-term beneficial effect on patency at 24 weeks after creations was not significant. Trial registration Chinese Clinical Trial Registry, No. ChiCTR1900024042. Registered, http://www.chictr.org.cn/index.aspx.

20.
Phytomedicine ; 98: 153947, 2022 Apr.
Article En | MEDLINE | ID: mdl-35104767

BACKGROUND: Shen Shuai Ⅱ Recipe (SSR) is an effective Chinese herbal formula for the treatment of patients with chronic kidney disease (CKD) in the clinic and significantly improves 5/6 ablation and infarction (A/I) surgery-induced renal interstitial fibrosis (RIF) and intrarenal hypoxia in rats. However, the underlying molecular mechanisms need further elucidation. PURPOSE: This study aims to investigate the renoprotective mechanisms of SSR in vivo and in vitro. METHODS: CKD model was induced in rats with 5/6 (A/I) surgery. 4 weeks later, rats were treated with vehicle or SSR or Fenofibrate by daily gavage. In vitro, HK2 cells exposed to hypoxia (1% O2) were treated with SSR in the presence or absence of 100 µM MitoTEMPO or 10 µM Mitochondrial Fusion Promoter M1. The effects of SSR on RIF, mitochondrial dynamics, oxidative metabolism, and mitochondrial ROS (mtROS) were determined by immunoblotting, colorimetric, and fluorometric assays according to the experimental protocols. Furthermore, to explore the mechanisms of SSR against RIF, HK2 cells of PGC-1α or MFN2 knockdown under hypoxic stimulation were treated with 400 µg/ml of SSR and (or) 1 µM of ZLN005. RESULTS: The results showed that treatment with SSR significantly improved mitochondrial morphology and function, up-regulated the expression of PGC-1α protein, and inhibited the production of mtROS in 5/6 (A/I) kidneys and hypoxia-treated HK2 cells, which may be closely correlated with its anti-RIF effect. In addition, compared to wild-type HK2 cells, the roles of SSR in improving mitochondrial dynamics and energy metabolism were greatly diminished in HK2 cells of PGC-1α knockdown under hypoxic exposure. More importantly, compared to ZLN005 or SSR combined with ZLN005 treatment, MFN2-deficient HK2 cells exhibited the increased protein levels of FN, α-SMA, TGF-ß1 and cleaved IL-1ß in response to hypoxic stimulation. CONCLUSION: SSR exerted the renoprotective effects by improving mitochondrial dynamics under hypoxic condition via PGC-1α activation.

...