Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Ther Med ; 25(5): 203, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37090071

RESUMEN

The clinical features and risk factors for survival time were analysed in haemodialysis patients complicated with infective endocarditis. A total of 101 infective endocarditis (IE) patients treated at Hangzhou First People's Hospital, from January 1, 2012, to April 1, 2022, were included in the present study. Baseline demographic data and laboratory data were collected for statistical analysis of risk factors and survival time in the IE with haemodialysis group (HD-IE group, n=15) and the IE without haemodialysis group (NHD-IE group, n=86). Haemoglobin, red blood cells, C-reactive protein, procalcitonin, serum albumin, diabetes, invasive procedures, positive blood bacteria culture, heart valve calcification ratio, and left ventricular ejection fraction level were risk factors for infective endocarditis complicated with haemodialysis (P<0.05). Compared with the NHD-IE group, the HD-IE group had an obviously increased risk of mortality (χ2=6.323, P=0.012). The univariate Cox regression analysis showed that age, haemoglobin, red blood cells, serum albumin, left ventricular ejection score, longest vegetation diameter, combined hypotension and diabetes were risk factors for death; furthermore, multivariate Cox regression showed that age (HR=1.187, P=0.015), combined hypotension (HR=0.921, P=0.025) and the longest vegetation diameter (HR=9.191, P=0.004) were independent risk factors affecting the survival of patients. Collectively, the present study revealed that the mortality rate of HD-IE patients was higher than that of NHD-IE patients. Older age, hypotension, and the longest vegetation diameter were independent risk factors affecting the survival of patients. For HD-IE patients, active and effective antibiotic treatment or surgical treatment should be strongly recommended.

2.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838862

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases, which in turn triggers mild inflammation, metabolic dysfunction, fibrosis, and even cancer. Accumulating evidence has suggested that Berberine (BBR) could significantly improve MAFLD progression. Clock and Bmal1 as heterodimer proteins highly participated in the development of MAFLD, but whether BBR targets Clock and Bmal1 in MAFLD remains poorly understood. The result suggested that the protein levels of Clock and Bmal1 were decreased in MAFLD mice, which was negatively correlated with elevated reactive oxygen species (ROS) accumulation, the H2O2 level, liver inflammation, metabolic dysfunction, and insulin resistance. The mRNA and protein levels of Clock and Bmal1 were also decreased in glucosamine-induced HepG2 cells, which were are negatively related to glucose uptake, the ROS level, and the H2O2 level. More importantly, Bmal1 siRNA could mimic the effect of glucosamine in HepG2 cells. Interestingly, Berberine (BBR) could rescue metabolism disorder and redox homeostasis through enhancing Clock and Bmal1 expression in vivo and in vitro. Therefore, BBR might be an effective natural compound for alleviating redox homeostasis, metabolism disorder, and liver pathological changes in MAFLD by activating Clock and Bmal1 expression.


Asunto(s)
Berberina , Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Factores de Transcripción ARNTL/genética , Berberina/metabolismo , Glucosamina , Homeostasis , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Humanos , Células Hep G2
3.
Front Pharmacol ; 11: 616378, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519483

RESUMEN

Oxidative stress is the main factor responsible for the induction of diabetic renal fibrosis. Thus, improving the state of oxidative stress can effectively prevent the further deterioration of diabetic nephropathy (DN). Previous research has shown that formononetin (FMN), a flavonoid with significant antioxidant activity and Sirt1 activation effect, can improve diabetic renal fibrosis. However, the exact mechanisms underlying the effect of FMN on diabetic renal fibrosis have yet to be elucidated. In this study, we carried out in vivo experiments in a db/db (diabetic) mouse model and demonstrated that FMN activated the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway and improved oxidative stress by increasing levels of sirtuin-1 (Sirt1) protein level in renal tissue. We also found that this process reversed the up-regulation of fibronectin (FN) and intercellular adhesion molecule 1 (ICAM-1) and led to an improvement in renal insufficiency. In vitro results further showed that FMN significantly reversed the upregulation of FN and ICAM-1 in glomerular mesangial cells (GMCs) exposed to high glucose. FMN also promoted the expression of Nrf2 and widened its nuclear distribution. Thus, our data indicated that FMN inhibited hyperglycemia-induced superoxide overproduction by activating the Nrf2/ARE signaling pathway. We also found that FMN up-regulated the expression of Sirt1 and that Sirt1 deficiency could block the activation of the Nrf2/ARE signaling pathway in GMCs induced by high glucose. Finally, we found that Sirt1 deficiency could reverse the down-regulation of FN and ICAM-1 induced by FMN. Collectively, our data demonstrated that FMN up-regulated the expression of Sirt1 to activate the Nrf2/ARE signaling pathway, improved oxidative stress in DN to prevent the progression of renal fibrosis. Therefore, FMN probably represents an efficient therapeutic option of patients with DN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA