Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Orthop Surg Res ; 18(1): 911, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38031108

BACKGROUND: Bone morphogenetic protein 9 (BMP9) is a promising growth factor in bone tissue engineering, while the detailed molecular mechanism underlying BMP9-oriented osteogenesis remains unclear. In this study, we investigated the effect of lysyl oxidase (Lox) on the BMP9 osteogenic potential via in vivo and in vitro experiments, as well as the underlying mechanism. METHODS: PCR assay, western blot analysis, histochemical staining, and immunofluorescence assay were used to quantify the osteogenic markers level, as well as the possible mechanism. The mouse ectopic osteogenesis assay was used to assess the impact of Lox on BMP9-induced bone formation. RESULTS: Our findings suggested that Lox was obviously upregulated by BMP9 in 3T3-L1 cells. BMP9-induced Runx2, OPN, and mineralization were all enhanced by Lox inhibition or knockdown, while Lox overexpression reduced their expression. Additionally, the BMP9-induced adipogenic makers were repressed by Lox inhibition. Inhibition of Lox resulted in an increase in c-Myc mRNA and ß-catenin protein levels. However, the increase in BMP9-induced osteoblastic biomarkers caused by Lox inhibition was obviously reduced when ß-catenin knockdown. BMP9 upregulated HIF-1α expression, which was further enhanced by Lox inhibition or knockdown, but reversed by Lox overexpression. Lox knockdown or HIF-1α overexpression increased BMP9-induced bone formation, although the enhancement caused by Lox knockdown was largely diminished when HIF-1α was knocked down. Lox inhibition increased ß-catenin levels and decreased SOST levels, which were almost reversed by HIF-1α knockdown. CONCLUSION: Lox may reduce the BMP9 osteoblastic potential by inhibiting Wnt/ß-catenin signaling via repressing the expression HIF-1α partially.


Growth Differentiation Factor 2 , beta Catenin , Animals , Mice , 3T3-L1 Cells , beta Catenin/genetics , Cell Differentiation/genetics , Growth Differentiation Factor 2/genetics , Growth Differentiation Factor 2/metabolism , Osteogenesis/genetics , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism
2.
Int J Biochem Cell Biol ; 164: 106476, 2023 Nov.
Article En | MEDLINE | ID: mdl-37802385

Bone morphogenetic protein 9 (BMP9) has been validated as one of the most potent osteoinduction factors, but its underlying mechanism remains unclear. As a member of the matrix metalloproteinase (MMP) family, MMP13 may be involved in regulating the lineage-specific differentiation of mouse embryonic fibroblasts (MEFs). The goal of this study was to determine whether MMP13 regulates the osteoinduction potential of BMP9 in MEFs, which are multipotent progenitor cells widely used for stem cell biology research. In vitro and in vivo experiments showed that BMP9-induced osteogenic markers and/or bone were enhanced by exogenous MMP13 in MEFs, but were reduced by MMP13 knockdown or inhibition. The expression of hypoxia inducible factor 1 alpha (HIF-1α) was induced by BMP9, which was enhanced by MMP13. The protein expression of ß-catenin and phosphorylation level of glycogen synthase kinase-3 beta (GSK-3ß) were increased by BMP9 in MEFs, as was the translocation of ß-catenin from the cytoplasm to the nucleus; all these effects of BMP9 were enhanced by MMP13. Furthermore, the MMP13 effects of increasing BMP9-induced ß-catenin protein expression and GSK-3ß phosphorylation level were partially reversed by HIF-1α knockdown. These results suggest that MMP13 can enhance the osteoinduction potential of BMP9, which may be mediated, at least in part, through the HIF-1α/ß-catenin axis. Our findings demonstrate a novel role of MMP13 in the lineage decision of progenitor cells and provide a promising strategy to speed up bone regeneration.


Growth Differentiation Factor 2 , beta Catenin , Animals , Mice , beta Catenin/metabolism , Cell Differentiation , Fibroblasts/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Growth Differentiation Factor 2/pharmacology , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/pharmacology , Osteogenesis , Up-Regulation
...