Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE J Biomed Health Inform ; 28(5): 2830-2841, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38376972

RESUMEN

Deep learning-based methods have been widely used in medical image segmentation recently. However, existing works are usually difficult to simultaneously capture global long-range information from images and topological correlations among feature maps. Further, medical images often suffer from blurred target edges. Accordingly, this paper proposes a novel medical image segmentation framework named a label-decoupled network with spatial-channel graph convolution and dual attention enhancement mechanism (LADENet for short). It constructs learnable adjacency matrices and utilizes graph convolutions to effectively capture global long-range information on spatial locations and topological dependencies between different channels in an image. Then a label-decoupled strategy based on distance transformation is introduced to decouple an original segmentation label into a body label and an edge label for supervising the body branch and edge branch. Again, a dual attention enhancement mechanism, designing a body attention block in the body branch and an edge attention block in the edge branch, is built to promote the learning ability of spatial region and boundary features. Besides, a feature interactor is devised to fully consider the information interaction between the body and edge branches to improve segmentation performance. Experiments on benchmark datasets reveal the superiority of LADENet compared to state-of-the-art approaches.


Asunto(s)
Aprendizaje Profundo , Humanos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos , Bases de Datos Factuales
2.
Neural Netw ; 173: 106169, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38359642

RESUMEN

Graph neural networks have revealed powerful potential in ranking recommendation. Existing methods based on bipartite graphs for ranking recommendation mainly focus on homogeneous graphs and usually treat user and item nodes as the same kind of nodes, however, the user-item bipartite graph is always heterogeneous. Additionally, various types of nodes have varying effects on recommendations, and a good node representation can be learned by successfully differentiating the same type of nodes. In this paper, we develop a node-personalized multi-graph convolutional network (NP-MGCN) for ranking recommendation. It consists of a node importance awareness block, a graph construction module, and a node information propagation and aggregation framework. Specifically, a node importance awareness block is proposed to encode nodes using node degree information to highlight the differences between nodes. Subsequently, the Jaccard similarity and co-occurrence matrix fusion graph construction module is devised to acquire user-user and item-item graphs, enriching correlation information between users and between items. Finally, a composite hop node information propagation and aggregation framework, including single-hop and double-hop branches, is designed. The high-order connectivity is used to aggregate heterogeneous information for the single-hop branch, while the multi-hop dependency is utilized to aggregate homogeneous information for the double-hop branch. It makes user and item node embedding more discriminative and integrates the different nodes' heterogeneity into the model. Experiments on several datasets manifest that NP-MGCN achieves outstanding recommendation performance than existing methods.


Asunto(s)
Enfermedades Hereditarias del Ojo , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Aprendizaje , Redes Neurales de la Computación
3.
Med Biol Eng Comput ; 62(2): 537-549, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37945794

RESUMEN

Cortical surface parcellation aims to segment the surface into anatomically and functionally significant regions, which are crucial for diagnosing and treating numerous neurological diseases. However, existing methods generally ignore the difficulty in learning labeling patterns of boundaries, hindering the performance of parcellation. To this end, this paper proposes a joint parcellation and boundary network (JPBNet) to promote the effectiveness of cortical surface parcellation. Its core is developing a multi-rate-shared dilated graph attention (MDGA) module and incorporating boundary learning into the parcellation process. The former, in particular, constructs a dilated graph attention strategy, extending the dilated convolution from regular data to irregular graph data. We fuse it with different dilated rates to extract context information in various scales by devising a shared graph attention layer. After that, a boundary enhancement module and a parcellation enhancement module based on graph attention mechanisms are built in each layer, forcing MDGA to capture informative and valuable features for boundary detection and parcellation tasks. Integrating MDGA, the boundary enhancement module, and the parcellation enhancement module at each layer to supervise boundary and parcellation information, an effective JPBNet is formed by stacking multiple layers. Experiments on the public dataset reveal that the proposed method outperforms comparison methods and performs well on boundaries for cortical surface parcellation.


Asunto(s)
Corteza Cerebral , Aprendizaje , Procesamiento de Imagen Asistido por Computador
4.
Neural Netw ; 157: 444-459, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36427414

RESUMEN

Graph neural networks (GNNs) have shown strong graph-structured data processing capabilities. However, most of them are generated based on the message-passing mechanism and lack of the systematic approach to guide their developments. Meanwhile, a unified point of view is hard to explain the design concepts of different GNN models. This paper presents a unified optimization framework from hybrid regularized graph signal reconstruction to establish the connection between the aggregation operations of different GNNs, showing that exploring the optimal solution is the process of GNN information aggregation. We use this new framework to mathematically explain several classic GNN models and summarizes their commonalities and differences from a macro perspective. The proposed framework not only provides convenience to understand GNNs, but also has a guiding significance for the proposal of new GNNs. Moreover, we design a model-driven fixed-point iteration method and a data-driven dictionary learning network according to the corresponding optimization objective and sparse representation. Then the new model, GNN based on model-driven and data-driven (GNN-MD), is established by using alternating iteration methods. We also theoretically analyze its convergence. Numerous node classification experiments on multiple datasets illustrate that the proposed GNN-MD has excellent performance and outperforms all baselines on high-feature-dimension datasets.


Asunto(s)
Aprendizaje , Redes Neurales de la Computación
5.
Artículo en Inglés | MEDLINE | ID: mdl-35286267

RESUMEN

Although convolutional neural networks (CNNs) have shown good performance on grid data, they are limited in the semantic segmentation of irregular point clouds. This article proposes a novel and effective graph CNN framework, referred to as the local-global graph convolutional method (LGGCM), which can achieve short- and long-range dependencies on point clouds. The key to this framework is the design of local spatial attention convolution (LSA-Conv). The design includes two parts: generating a weighted adjacency matrix of the local graph composed of neighborhood points, and updating and aggregating the features of nodes to obtain the spatial geometric features of the local point cloud. In addition, a smooth module for central points is incorporated into the process of LSA-Conv to enhance the robustness of the convolution against noise interference by adjusting the position coordinates of the points adaptively. The learned robust LSA-Conv features are then fed into a global spatial attention module with the gated unit to extract long-range contextual information and dynamically adjust the weights of features from different stages. The proposed framework, consisting of both encoding and decoding branches, is an end-to-end trainable network for semantic segmentation of 3-D point clouds. The theoretical analysis of the approximation capabilities of LSA-Conv is discussed to determine whether the features of the point cloud can be accurately represented. Experimental results on challenging benchmarks of the 3-D point cloud demonstrate that the proposed framework achieves excellent performance.

6.
Neural Netw ; 144: 755-765, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34688017

RESUMEN

Deep learning has shown its great potential in the field of image classification due to its powerful feature extraction ability, which heavily depends on the number of available training samples. However, it is still a huge challenge on how to obtain an effective feature representation and further learn a promising classifier by deep networks when faced with few-shot classification tasks. This paper proposes a multi-features adaptive aggregation meta-learning method with an information enhancer for few-shot classification tasks, referred to as MFAML. It contains three main modules, including a feature extraction module, an information enhancer, and a multi-features adaptive aggregation classifier (MFAAC). During the meta-training stage, the information enhancer comprised of some deconvolutional layers is designed to promote the effective utilization of samples and thereby capturing more valuable information in the process of feature extraction. Simultaneously, the MFAAC module integrates the features from several convolutional layers of the feature extraction module. The obtained features then feed into the similarity module so that implementing the adaptive adjustment of the predicted label. The information enhancer and MFAAC are connected by a hybrid loss, providing an excellent feature representation. During the meta-test stage, the information enhancer is removed and we keep the remaining architecture for fast adaption on the final target task. The whole MFAML framework is solved by the optimization strategy of model-agnostic meta-learner (MAML) and can effectively improve generalization performance. Experimental results on several benchmark datasets demonstrate the superiority of the proposed method over other representative few-shot classification methods.


Asunto(s)
Redes Neurales de la Computación
7.
IEEE Trans Cybern ; 51(9): 4450-4463, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32203051

RESUMEN

This article proposes a novel regularization deep cascade broad learning system (DCBLS) architecture, which includes one cascaded feature mapping nodes layer and one cascaded enhancement nodes layer. Then, the transformation feature representation is easily obtained by incorporating the enhancement nodes and the feature mapping nodes. Once such a representation is established, a final output layer is constructed by implementing a simple convex optimization model. Furthermore, a parallelization framework on the new method is designed to make it compatible with large-scale data. Simultaneously, an adaptive regularization parameter criterion is adopted under some conditions. Moreover, the stability and error estimate of this method are discussed and proved mathematically. The proposed method could extract sufficient available information from the raw data compared with the standard broad learning system and could achieve compellent successes in image denoising. The experiments results on benchmark datasets, including natural images as well as hyperspectral images, verify the effectiveness and superiority of the proposed method in comparison with the state-of-the-art approaches for image denoising.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31170070

RESUMEN

Matrix completion has been widely used in image processing, in which the popular approach is to formulate this issue as a general low-rank matrix approximation problem. This paper proposes a novel regularization method referred to as truncated Frobenius norm (TFN), and presents a hybrid truncated norm (HTN) model combining the truncated nuclear norm and truncated Frobenius norm for solving matrix completion problems. To address this model, a simple and effective two-step iteration algorithm is designed. Further, an adaptive way to change the penalty parameter is introduced to reduce the computational cost. Also, the convergence of the proposed method is discussed and proved mathematically. The proposed approach could not only effectively improve the recovery performance but also greatly promote the stability of the model. Meanwhile, the use of this new method could eliminate large variations that exist when estimating complex models, and achieve competitive successes in matrix completion. Experimental results on the synthetic data, real-world images as well as recommendation systems, particularly the use of the statistical analysis strategy, verify the effectiveness and superiority of the proposed method, i.e. the proposed method is more stable and effective than other state-of-the-art approaches.

9.
Neural Netw ; 85: 10-20, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27814461

RESUMEN

Recovering the low-rank, sparse components of a given matrix is a challenging problem that arises in many real applications. Existing traditional approaches aimed at solving this problem are usually recast as a general approximation problem of a low-rank matrix. These approaches are based on the nuclear norm of the matrix, and thus in practice the rank may not be well approximated. This paper presents a new approach to solve this problem that is based on a new norm of a matrix, called the truncated nuclear norm (TNN). An efficient iterative scheme developed under the linearized alternating direction method multiple framework is proposed, where two novel iterative algorithms are designed to recover the sparse and low-rank components of matrix. More importantly, the convergence of the linearized alternating direction method multiple on our matrix recovering model is discussed and proved mathematically. To validate the effectiveness of the proposed methods, a series of comparative trials are performed on a variety of synthetic data sets. More specifically, the new methods are used to deal with problems associated with background subtraction (foreground object detection), and removing shadows and peculiarities from images of faces. Our experimental results illustrate that our new frameworks are more effective and accurate when compared with other methods.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA