Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
J Econ Entomol ; 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38493360

Grasshoppers represent a significant biological challenge in Inner Mongolia's grasslands, severely affecting the region's animal husbandry. Thus, dynamic monitoring of grasshopper infestation risk is crucial for sustainable livestock farming. This study employed the Maxent model, along with remote sensing data, to forecast Oedaleus decorus asiaticus occurrence during the growing season, using grasshopper suitability habitats as a base. The Maxent model's predictive accuracy was high, with an AUC of 0.966. The most influential environmental variables for grasshopper distribution were suitable habitat data (34.27%), the temperature-vegetation dryness index during the spawning period (18.81%), and various other meteorological and vegetation factors. The risk index model was applied to calculate the grasshopper distribution across different risk levels for the years 2019-2022. The data indicated that the level 1 risk area primarily spans central, eastern, and southwestern Inner Mongolia. By examining the variable weights, the primary drivers of risk level fluctuation from 2019 to 2022 were identified as accumulated precipitation and land surface temperature anomalies during the overwintering period. This study offers valuable insights for future O. decorus asiaticus monitoring in Inner Mongolia.

2.
Plants (Basel) ; 12(21)2023 Oct 27.
Article En | MEDLINE | ID: mdl-37960063

Enshi Yulu, a renowned Chinese steamed green tea, is highly valued for its unique sensory attributes. To enhance our comprehensive understanding of the metabolic variation induced by steaming fixation, we investigated the overall chemical profiles and organoleptic quality of Enshi Yulu from different tea cultivars (Longjing 43, Xiapu Chunbolv, and Zhongcha 108). The relationships between sensory traits and non-volatiles/volatiles were evaluated. A total of 58 volatiles and 18 non-volatiles were identified as characteristic compounds for discriminating among the three tea cultivars, and the majority were correlated with sensory attributes. The "mellow" taste was associated with L-aspartic acid, L-asparagine, L-tyrosine, L-valine, EGC, EC, and ECG, while gallic acid and theobromine contributed to the "astringent" taste. "Kokumi" contributors were identified as L-methionine, L-lysine, and GCG. Enshi Yulu displayed a "pure" and "clean and refreshing" aroma associated with similar volatiles like benzyl alcohol, δ-cadinene, and muurolol. The composition of volatile compounds related to the "chestnut" flavor was complex, including aromatic heterocycles, acids, ketones, terpenes, and terpene derivatives. The key contributors to the "fresh" flavor were identified as linalool oxides. This study provides valuable insights into the sensory-related chemical profiles of Enshi Yulu, offering essential information for flavor and quality identification of Enshi Yulu.

3.
Insects ; 14(6)2023 May 24.
Article En | MEDLINE | ID: mdl-37367308

O. decorus asiaticus is a major grasshopper species that harms the development of agriculture on the Mongolian Plateau. Therefore, it is important to enhance the monitoring of O. decorus asiaticus. In this study, the spatiotemporal variation in the habitat suitability for O. decorus asiaticus on the Mongolian Plateau was assessed using maximum entropy (Maxent) modeling along with multi-source remote sensing data (meteorology, vegetation, soil, and topography). The predictions of the Maxent model were accurate (AUC = 0.910). The key environmental variables affecting the distribution of grasshoppers and their contribution were grass type (51.3%), accumulated precipitation (24.9%), altitude (13.0%), vegetation coverage (6.6%), and land surface temperature (4.2%). Based on the assessment results of suitability by Maxent model, the model threshold settings, and the formula for calculating the inhabitability index, the 2000s, 2010s, and 2020s inhabitable areas were calculated. The results show that the distribution of suitable habitat for O. decorus asiaticus in 2000 was similar to that in 2010. From 2010 to 2020, the suitability of the habitat for O. decorus asiaticus in the central region of the Mongolian Plateau changed from moderate to high. The main factor contributing to this change was accumulated precipitation. Few changes in the areas of the habitat with low suitability were observed across the study period. The results of this study enhance our understanding of the vulnerability of different regions on the Mongolian Plateau to plagues of O. decorus asiaticus and will aid the monitoring of grasshopper plagues in this region.

4.
Insects ; 14(2)2023 Jan 29.
Article En | MEDLINE | ID: mdl-36835706

Grasshopper populations can quickly grow to catastrophic levels, causing a huge amount of damage in a short time. Oedaleus decorus asiaticus (Bey-Bienko) (O. d. asiaticus) is the most serious species in Xilingol League of the Inner Mongolia Autonomous Region. The region is not only an important grassland but also a site of agricultural heritage systems in China. Therefore, projecting the potential geographic distribution of O. d. asiaticus to provide an early warning is vital. Here, we combined temperature, precipitation, soil, vegetation, and topography with remote sensing data to screen the predictors that best characterize the current geographical distribution of O. d. asiaticus. A MaxEnt model approach was applied to project the potential suitable distribution of O. d. asiaticus in Xilingol League (the Inner Mongolia Autonomous Region of China) combined with a set of optimized parameters. The modeling results indicated that there were six main habitat factors that determined the suitable distribution of O. d. asiaticus such as the soil type (ST), grassland type (GT), elevation, precipitation during the growing period (GP), precipitation during the spawning period (SP), and normalized difference vegetation index during the overwintering period (ONDVI). The simulated result was good, with average AUC and TSS values of 0.875 and 0.812, respectively. The potential inhabitable areas of grasshoppers were 198,527 km2, distributed mainly in West Urumqi, Xilinhot City, East Urumqi, Abaga Banner, and Xianghuang Banner of Xilingol League. This study is valuable to guide managers and decision-makers to prevent and control the occurrence of O. d. asiaticus early on and this study may facilitate meaningful reductions in pesticide application.

5.
Opt Express ; 30(16): 28997-29006, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-36299084

The influence of frequency detuning on the field in silicon microresonators with multiphoton absorption and FC effect is investigated. In this study, results show that frequency detuning facilitates soliton generation. With appropriate frequency detuning, not only bright solitons but also dark ones can be excited in silicon microresonators, which compensates for the absence of solitons with multiphoton absorption and FC. In particular, the larger the frequency detuning is, the wider is the combs spectrum with 2PA obtained. In order to excite the soliton efficiently, the regulation of frequency detuning with multiphoton absorption and FC effect is also studied. In regulating the frequency detuning process with 2PA, a progressively enhanced soliton can be formed in the region near zero detuning. In the tuning process, 3PA can generate bright and dark solitons respectively at various detuning intervals, and independent bright solitons can be observed in microresonators with 4PA. The research results are significant for studying the generation of solitons in silicon microresonators with multiphoton absorption and FC effect.

6.
Insects ; 13(10)2022 Sep 30.
Article En | MEDLINE | ID: mdl-36292842

Grasshoppers mainly threaten natural grassland vegetation and crops. Therefore, it is of great significance to understand the relationship between environmental factors and grasshopper occurrence. This paper studies the spatial distribution and key factors of grasshopper occurrence in two grass types by integrating a machine learning model (Maxent) and remote sensing data within the major grasshopper occurrence areas of Inner Mongolia, China. The modelling results demonstrate that the typical steppe has larger suitable area and more proportion for grasshopper living than meadow steppe. The soil type, above biomass, altitude and temperature mainly determine the grasshopper occurrence in typical steppe and meadow steppe. However, the contribution of these factors in the two grass types is significantly different. In addition, related vegetation and meteorological factors affect the different growing stages of grasshoppers between the two grass types. This study clearly defines the different effects of key environmental factors (meteorology, vegetation, soil and topography) for grasshopper occurrence in typical steppe and meadow steppe. It also provides a methodology to guide early warning and precautions for grasshopper pest prevention. The findings of this study will be helpful for future management measures, to ensure grass ecological environment security and the sustainable development of grassland.

7.
Front Plant Sci ; 13: 1090970, 2022.
Article En | MEDLINE | ID: mdl-36618627

Accurate predictions of wheat yields are essential to farmers'production plans and to the international trade in wheat. However, only poor approximations of the productivity of wheat crops in China can be obtained using traditional linear regression models based on vegetation indices and observations of the yield. In this study, Sentinel-2 (multispectral data) and ZY-1 02D (hyperspectral data) were used together with 15709 gridded yield data (with a resolution of 5 m × 5 m) to predict the winter wheat yield. These estimates were based on four mainstream data-driven approaches: Long Short-Term Memory (LSTM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Regression (SVR). The method that gave the best estimate of the winter wheat yield was determined, and the accuracy of the estimates based on multispectral and hyperspectral data were compared. The results showed that the LSTM model, for which the RMSE of the estimates was 0.201 t/ha, performed better than the RF (RMSE = 0.260 t/ha), GBDT (RMSE = 0.306 t/ha), and SVR (RMSE = 0.489 t/ha) methods. The estimates based on the ZY-1 02D hyperspectral data were more accurate than those based on the 30-m Sentinel-2 data: RMSE = 0.237 t/ha for the ZY-1 02D data, which is about a 5% improvement on the RSME of 0.307 t/ha for the 30-m Sentinel-2 data. However, the 10-m Sentinel-2 data performed even better, giving an RMSE of 0.219 t/ha. In addition, it was found that the greenness vegetation index SR (simple ratio index) outperformed the traditional vegetation indices. The results highlight the potential of the shortwave infrared bands to replace the visible and near-infrared bands for predicting crop yields Our study demonstrates the advantages of the deep learning method LSTM over machine learning methods in terms of its ability to make accurate estimates of the winter wheat yield.

8.
Front Plant Sci ; 13: 1075856, 2022.
Article En | MEDLINE | ID: mdl-36618628

The tiller density is a key agronomic trait of winter wheat that is essential to field management and yield estimation. The traditional method of obtaining the wheat tiller density is based on manual counting, which is inefficient and error prone. In this study, we established machine learning models to estimate the wheat tiller density in the field using hyperspectral and multispectral remote sensing data. The results showed that the vegetation indices related to vegetation cover and leaf area index are more suitable for tiller density estimation. The optimal mean relative error for hyperspectral data was 5.46%, indicating that the results were more accurate than those for multispectral data, which had a mean relative error of 7.71%. The gradient boosted regression tree (GBRT) and random forest (RF) methods gave the best estimation accuracy when the number of samples was less than around 140 and greater than around 140, respectively. The results of this study support the extension of the tested methods to the large-scale monitoring of tiller density based on remote sensing data.

9.
Appl Opt ; 59(26): 8003-8013, 2020 Sep 10.
Article En | MEDLINE | ID: mdl-32976476

Yellow rust is the most extensive disease in wheat cultivation, seriously affecting crop quality and yield. This study proposes sensitive wavelet features (WFs) for wheat yellow rust monitoring based on unmanned aerial vehicle hyperspectral imagery of different infestation stages [26 days after inoculation (26 DAI) and 42 DAI]. Furthermore, we evaluated the monitoring ability of WFs and vegetation indices on wheat yellow rust through linear discriminant analysis and support vector machine (SVM) classification frameworks in different infestation stages, respectively. The results show that WFs-SVM have promising potential for wheat yellow rust monitoring in both the 26 DAI and 42 DAI stages.

10.
Sensors (Basel) ; 20(1)2019 Dec 19.
Article En | MEDLINE | ID: mdl-31861503

Fusarium head blight in winter wheat ears produces the highly toxic mycotoxin deoxynivalenol (DON), which is a serious problem affecting human and animal health. Disease identification directly on ears is important for selective harvesting. This study aimed to investigate the spectroscopic identification of Fusarium head blight by applying continuous wavelet analysis (CWA) to the reflectance spectra (350 to 2500 nm) of wheat ears. First, continuous wavelet transform was used on each of the reflectance spectra and a wavelet power scalogram as a function of wavelength location and the scale of decomposition was generated. The coefficient of determination R2 between wavelet powers and the disease infestation ratio were calculated by using linear regression. The intersections of the top 5% regions ranking in descending order based on the R2 values and the statistically significant (p-value of t-test < 0.001) wavelet regions were retained as the sensitive wavelet feature regions. The wavelet powers with the highest R2 values of each sensitive region were retained as the initial wavelet features. A threshold was set for selecting the optimal wavelet features based on the coefficient of correlation R obtained via the correlation analysis among the initial wavelet features. The results identified six wavelet features which include (471 nm, scale 4), (696 nm, scale 1), (841 nm, scale 4), (963 nm, scale 3), (1069 nm, scale 3), and (2272 nm, scale 4). A model for identifying Fusarium head blight based on the six wavelet features was then established using Fisher linear discriminant analysis. The model performed well, providing an overall accuracy of 88.7% and a kappa coefficient of 0.775, suggesting that the spectral features obtained using CWA can potentially reflect the infestation of Fusarium head blight in winter wheat ears.


Fusarium/chemistry , Plant Diseases/microbiology , Triticum/microbiology , Wavelet Analysis , Discriminant Analysis , Fusarium/isolation & purification , Spectrophotometry , Triticum/chemistry
11.
Appl Opt ; 57(25): 7296-7302, 2018 Sep 01.
Article En | MEDLINE | ID: mdl-30182991

We demonstrate a simple, controllable, and stable method for fabricating high fill factor cylindrical microlens array with a novel isolated thermal reflow process. In this method, microstripes with a very small gap were obtained via digital micromirror device-based lithography, then covered with polydimethylsiloxane (PDMS) solution. The prepared microstripes were isolated and were heated and reflowed to a cylindrical microlens array. During the reflow process, the semicross-linked PDMS can serve as a barrier to prevent the diameter change and the bonding of adjacent microlenses. By this special treatment, the fill factor of the cylindrical microlens array can be significantly improved. Moreover, the reflow time and temperature have very little effect on the microlens shape due to the surrounded semicross-linked PDMS. This will make our process stabler than traditional methods. The measured 3D profile is good and satisfactory, and excellent optical performance is demonstrated with the fabricated cylindrical microlens arrays. The proposed method may offer a viable route for fabrication of high fill factor microlens arrays in a very simple and stable way.

12.
Sensors (Basel) ; 18(6)2018 Jun 11.
Article En | MEDLINE | ID: mdl-29891814

In recent decades, rice disease co-epidemics have caused tremendous damage to crop production in both China and Southeast Asia. A variety of remote sensing based approaches have been developed and applied to map diseases distribution using coarse- to moderate-resolution imagery. However, the detection and discrimination of various disease species infecting rice were seldom assessed using high spatial resolution data. The aims of this study were (1) to develop a set of normalized two-stage vegetation indices (VIs) for characterizing the progressive development of different diseases with rice; (2) to explore the performance of combined normalized two-stage VIs in partial least square discriminant analysis (PLS-DA); and (3) to map and evaluate the damage caused by rice diseases at fine spatial scales, for the first time using bi-temporal, high spatial resolution imagery from PlanetScope datasets at a 3 m spatial resolution. Our findings suggest that the primary biophysical parameters caused by different disease (e.g., changes in leaf area, pigment contents, or canopy morphology) can be captured using combined normalized two-stage VIs. PLS-DA was able to classify rice diseases at a sub-field scale, with an overall accuracy of 75.62% and a Kappa value of 0.47. The approach was successfully applied during a typical co-epidemic outbreak of rice dwarf (Rice dwarf virus, RDV), rice blast (Magnaporthe oryzae), and glume blight (Phyllosticta glumarum) in Guangxi Province, China. Furthermore, our approach highlighted the feasibility of the method in capturing heterogeneous disease patterns at fine spatial scales over the large spatial extents.


Oryza/growth & development , Plant Diseases/statistics & numerical data , Remote Sensing Technology/methods , Satellite Imagery , Discriminant Analysis , Least-Squares Analysis , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/metabolism
13.
Sensors (Basel) ; 17(12)2017 Nov 23.
Article En | MEDLINE | ID: mdl-29168757

Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers, while the optimized SR-like index was recommended for the bottom Chl estimation due to its simple and universal form. We suggest that it is necessary to take into account the penetration characteristic of the light inside the canopy for different Chl absorption regions of the spectrum and the formula used to derive spectral index when estimating the vertical profile of leaf Chl content using off-nadir hyperspectral data.


Triticum , Chlorophyll , Plant Leaves , Spectrum Analysis
14.
Environ Monit Assess ; 187(2): 13, 2015 Feb.
Article En | MEDLINE | ID: mdl-25619696

Understanding the spatial variability of soil microelements and its influencing factors is of importance for a number of applications such as scientifically formulated fertilizer and environmental protection. This study used descriptive statistics and geostatistics to investigate the spatial variability of available soil Fe, Mn, Cu, and Zn contents in agricultural topsoil (0-20 cm) in an ecological functional zone located at Yanqing County, Beijing, China. Kriging method was applied to map the spatial patterns of available soil Fe, Mn, Cu, and Zn contents. Results showed that the available soil Cu had a widest spatial correlation distance (e.g., 9.6 km), which for available soil Fe, Mn, and Zn were only 1.29, 2.58, and 0.99 km, respectively. The values of C 0/sill for available soil Fe and Zn were 0.12 and 0.11, respectively, demonstrating that the spatial heterogeneity was mainly due to structural factors. The available soil Mn and Cu had the larger values of C 0/sill (i.e., 0.50 and 0.44 for Mn and Cu, respectively), which showed a medium spatial correlation. Mapping of the spatial patterns of the four microelements showed that the decrease trend of available soil Fe and Mn were from northeast to southwest across the study area. The highest amount of available soil Cu was distributed in the middle of the study area surrounding urban region which presented as a "single island". The highest amount of available soil Zn was mainly distributed in the north and south of the study area. One-way analysis of variance for the influencing factors showed that the lithology of parental materials, soil organic matter, and pH were important factors affecting spatial variability of the available microelements. The topography only had a significant influence on the spatial variability of available soil Fe and Mn contents, parental materials, and the land use types had little influence on the spatial variability.


Soil Pollutants/analysis , Soil/chemistry , Trace Elements/analysis , Agriculture , China , Conservation of Natural Resources , Ecology , Environmental Monitoring , Fertilizers , Spatial Analysis
15.
J Colloid Interface Sci ; 421: 103-13, 2014 May 01.
Article En | MEDLINE | ID: mdl-24594038

This study theoretically investigated detachment of homoaggregates and heteroaggregates attached on the planar surfaces at primary minima during transients in solution chemistry. The homoaggregates were represented as small colloidal clusters with well-defined structures or as clusters generated by randomly packing spheres using Monte Carlo method. The heteroaggregates were modeled as microparticles coated with nanoparticles. Surface element integration technique was adopted to calculate Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies for the homoaggregates and heteroaggregates at different ionic strengths. Results show that attached homoaggregates on the planar surface at primary minima are irreversible to reduction in solution ionic strength whether the primary spheres of the homoaggregates are nano- or micro-sized. Heteroaggregation of nanoparticles with a microparticle can cause DLVO interaction energy to decrease monotonically with separation distance at low ionic strengths (e.g., ⩽0.01M), indicating that the heteroaggregates experience repulsive forces at all separation distances. Therefore, attachment of the heteroaggregates at primary minima can be detached upon reduction in ionic strength. Additionally, we showed that the adhesive forces and torques that the aforementioned heteroaggregates experience can be significantly smaller than those experienced by the microspheres without attaching nanoparticles, thus, the heteroaggregates are readily detached via hydrodynamic drag. Results of study provide plausible explanation for the observations in the literature that attached/aggregated particles can be detached/redispersed from primary minima upon reduction in ionic strength, which challenges the common belief that attachment/aggregation of particles in primary minima is chemically irreversible.


Microspheres , Nanoparticles , Adsorption , Monte Carlo Method , Surface Properties
...