Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 151
1.
Microvasc Res ; : 104697, 2024 May 25.
Article En | MEDLINE | ID: mdl-38801942

Cardiac myxoma is the most common primary cardiac tumor in adults. The histogenesis and cellular composition of myxoma are still unclear. This study aims to reveal the role of myxoma cell components and their gene expression in tumor development. We obtained single living cells by enzymatic digestion of tissues from 4 cases of surgically resected cardiac myxoma. Of course, there was 1 case of glandular myxoma and 3 cases of nonglandular myxoma. Then, 10× single-cell sequencing was performed. We identified 12 types and 11 types of cell populations in glandular myxoma and nonglandular myxoma, respectively. Heterogeneous epithelial cells are the main components of glandular myxoma. The similarities and differences in T cells in both glandular and nonglandular myxoma were analyzed by KEGG and GO. The most important finding was that there was active communication between T cells and epithelial cells. These results clarify the possible tissue occurrence and heterogeneity of cardiac myxoma and provide a theoretical basis and guidance for clinical diagnosis and treatment.

2.
Vet Microbiol ; 293: 110098, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677126

The infection of canine coronavirus (CCoV) causes a highly contagious disease in dogs with acute gastroenteritis. The efficient serological diagnostics is critical for controlling the disease caused by CCoV. Nucleocapsid (N) protein of CCoV is an important target for developing serological approaches. However, little is known about the antigenic sites in the N protein of CCoV. In this study, we generated a monoclonal antibody (mAb) against the N protein of CCoV, designated as 13E8, through the fusion of the sp2/0 cells with the spleen cells from a mouse immunized with the purified recombinant GST-N protein. Epitope mapping revealed that mAb 13E8 recognized a novel linear B cell epitope in N protein at 294-314aa (named as EP-13E8) by using a serial of truncated N protein through Western blot and ELISA. Sequence analysis showed that the sequence of EP-13E8 was highly conserved (100 %) among different CCoV strains analyzed, but exhibited a low similarity (31.8-63.6 %) with the responding sequence in other coronaviruses of the same genus such as FCoV, PEDV and HCoV except for TGEV (95.5 % identity). Structural assay suggested that the epitope of EP-13E8 were located in the close proximity on the surface of the N protein. Overall, the mAb 13E8 against N protein generated and its epitope EP-13E8 identified here paid the way for further developing epitope-based serological diagnostics for CCoV.


Antibodies, Monoclonal , Coronavirus, Canine , Epitope Mapping , Epitopes, B-Lymphocyte , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Dogs , Mice , Nucleocapsid Proteins/immunology , Coronavirus, Canine/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mice, Inbred BALB C , Coronavirus Nucleocapsid Proteins/immunology , Dog Diseases/virology , Dog Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/diagnosis , Amino Acid Sequence
3.
Viruses ; 16(4)2024 03 23.
Article En | MEDLINE | ID: mdl-38675838

Rabbit hemorrhagic disease (RHD) is an acute fatal disease caused by the rabbit hemorrhagic disease virus (RHDV). Since the first outbreaks of type 2 RHDV (RHDV2) in April 2020 in China, the persistence of this virus in the rabbit population has caused substantial economic losses in rabbit husbandry. Previous failures in preventing RHDV2 prompted us to further investigate the immune mechanisms underlying the virus's pathogenicity, particularly concerning the spleen, a vital component of the mononuclear phagocyte system (MPS). For this, a previous RHDV2 isolate, CHN/SC2020, was utilized to challenge naive adult rabbits. Then, the splenic transcriptome was determined by RNA-Seq. This study showed that the infected adult rabbits had 3148 differentially expressed genes (DEGs), which were associated with disease, signal transduction, cellular processes, and cytokine signaling categories. Of these, 100 upregulated DEGs were involved in inflammatory factors such as IL1α, IL-6, and IL-8. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were significantly enriched in the cytokine-cytokine receptor interaction signaling pathway, which may play a vital role in CHN/SC2020 infection. At the same time, proinflammatory cytokines and chemokines were significantly increased in the spleen at the late stages of infection. These findings suggested that RHDV2 (CHN/SC2020) might induce dysregulation of the cytokine network and compromise splenic immunity against viral infection, which expanded our understanding of RHDV2 pathogenicity.


Caliciviridae Infections , Cytokines , Hemorrhagic Disease Virus, Rabbit , Spleen , Transcriptome , Animals , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/immunology , Spleen/virology , Spleen/immunology , Rabbits , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Caliciviridae Infections/genetics , Cytokines/metabolism , Cytokines/genetics , Gene Expression Profiling , Inflammation/virology , Inflammation/genetics
4.
Poult Sci ; 103(6): 103693, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38598912

Avian leukosis virus subgroup J (ALV-J) is a retrovirus that can cause immunosuppression and tumors in chicken. However, relative pathogenesis is still not clear. At present, metabolomics has shown great potential in the screening of tumor metabolic markers, prognostic evaluation, and drug target design. In this study, we utilize an untargeted metabolomics approach based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) to analyze the metabolic changes in chicken embryo fibroblast (CEF) cells infected by ALV-J. We found that ALV-J infection significantly altered a wealth of metabolites compared with control group. Additionally, most of the differentially expressed metabolites belonged to lipid metabolism, purine nucleotide metabolism and amino acid metabolism. Among them, the proportion of lipid metabolites account for the highest proportion (around 31%). Results suggest that these changes may be conductive to the formation of virion, thereby promoting the replication of ALV-J. These data provided metabolic evidence and potential biomarkers for the cellular metabolic changes induced by ALV-J, and provided important insight for further understanding the replication needs and pathogenesis of ALV-J.

5.
Front Vet Sci ; 11: 1378120, 2024.
Article En | MEDLINE | ID: mdl-38550786

As an immunosuppressive disease virus, chicken infectious anemia virus (CIAV) mainly infects chickens, causing aplastic anemia and systemic lymphoid tissue atrophy. In recent years, the prevalence of CIAV in the poultry industry globally has caused huge economic losses. In this study, a total of 223 clinical samples, including anal swabs, tissues, blood, and vaccines, were collected from 19 broiler farms or breeding companies in Jiangsu province, with symptoms of significant anemia and immunosuppression during 2020-2022. Among them, 75 samples (75/223, 33.6%) were positive for CIAV in polymerase chain reaction (PCR) test, and 20 CIAV strains were successfully isolated. The phylogenetic trees of the 20 isolates and 42 CIAV strains deposited in GenBank formed four distinct groups (A-D). And the isolates mainly belonged to Group A but with high genetic diversity. Analysis for VP1 indicated that these isolates possess key characteristics of highly pathogenic strains. Meanwhile, VP2 and VP3 were much conserved with much fewer mutations compare to VP1. The above epidemiological study of CIAV provides novel insights into molecular characterization of CIAV and lays the foundation for developing efficient strategies for control of CIAV in China.

6.
Front Microbiol ; 14: 1270762, 2023.
Article En | MEDLINE | ID: mdl-38029131

Marek's disease (MD) caused by Marek's disease virus (MDV), poses a serious threat to the poultry industry by inducing neurological disease and malignant lymphoma in infected chickens. However, the underlying mechanisms how MDV disrupts host cells and causes damage still remain elusive. Recently, the application of metabolomics has shown great potential for uncovering the complex mechanisms during virus-host interactions. In this study, chicken embryo fibroblasts (CEFs) infected with MDV were subjected to ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) and multivariate statistical analysis. The results showed that 261 metabolites were significantly altered upon MDV infection, with most changes occurring in amino acid metabolism, energy metabolism, nucleotide metabolism, and lipid metabolism. Notably, MDV infection induces an up-regulation of amino acids in host cells during the early stages of infection to provide the energy and intermediary metabolites necessary for efficient multiplication of its own replication. Taken together, these data not only hold promise in identifying the biochemical molecules utilized by MDV replication in host cells, but also provides a new insight into understanding MDV-host interactions.

7.
Microbiol Spectr ; 11(6): e0246223, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37966208

IMPORTANCE: Epidemiological data reveal that FAdV-4 and FAdV-8a are the dominant serotypes of FAdVs in the poultry industry in China. Although three commercial inactivated vaccines against FAdV-4 have been licensed in China, the bivalent vaccine against both FAdV-4 and FAdV-8a is not available. Here, we used CRISPR-Cas9 and Cre-LoxP system to generate a recombinant virus FAdV4-F/8a-rF2 expressing the Fiber of FAdV-8a. Notably, FAdV4-F/8a-rF2 was highly attenuated and could provide efficient protection against both FAdV-4 and FAdV-8a in the chicken infection model, highlighting the applaudable application of FAdV4-F/8a-rF2 as a novel live-attenuated bivalent vaccine against the diseases caused by the infection of FAdV-4 and FAdV-8a.


Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Animals , Serogroup , Adenoviridae Infections/prevention & control , Adenoviridae Infections/veterinary , Aviadenovirus/genetics , Chickens , Vaccines, Combined
8.
J Virol ; 97(11): e0115223, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37902396

IMPORTANCE: 3'UTRs can affect gene transcription and post-transcriptional regulation in multiple ways, further influencing the function of proteins in a unique manner. Recently, ALV-J has been mutating and evolving rapidly, especially the 3'UTR of viral genome. Meanwhile, clinical symptoms caused by ALV-J have changed significantly. In this study, we found that the ALV-J strains containing △-r-TM-type 3'UTR are the most abundant. By constructing ALV-J infectious clones and subgenomic vectors containing different 3'UTRs, we prove that 3'UTRs directly affect viral tissue preference and can promote virus replication as an enhancer. ALV-J strain containing 3'UTR of △-r-TM proliferated fastest in primary cells. All five forms of 3'UTRs can assist intron-containing viral mRNA nuclear export, with similar efficiency. ALV-J mRNA half-life is not influenced by different 3'UTRs. Our results dissect the roles of 3'UTR on regulating viral replication and pathogenicity, providing novel insights into potential anti-viral strategies.


3' Untranslated Regions , Active Transport, Cell Nucleus , Avian Leukosis Virus , Virus Replication , Gene Expression , Gene Expression Regulation , Avian Leukosis Virus/genetics , Avian Leukosis Virus/physiology
9.
Microbiol Spectr ; 11(6): e0205923, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37882566

IMPORTANCE: Since the escape immunity of influenza A viruses (IAVs) is mainly caused by the continuous antigenic variations in HA, the identification of key antigenic epitopes is crucial for better understanding of the escape immunity and vaccine development for IAVs. The antigenic sites of several HA subtypes, including H1, H3, H5, and H9, have been well characterized, whereas those of H6 subtype are poorly understood. Here, we mapped nine key residues of antigenic epitopes in H6 through escape mutants using a panel of MAbs. Moreover, MAbs 4C2 and 6E3, targeting 140 and 89 residues, respectively, could protect mice against lethal challenge of MA E-Teal/417. These key residues of antigenic epitopes identified here provide the molecular targets for further elucidating the antigenic evolution of H6 and better preparing the vaccine against H6 IAV.


Influenza A virus , Influenza, Human , Animals , Mice , Humans , Influenza A virus/genetics , Hemagglutinins , Epitopes, B-Lymphocyte/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral , Influenza, Human/prevention & control
10.
AMB Express ; 13(1): 62, 2023 Jun 22.
Article En | MEDLINE | ID: mdl-37347456

Duck adenovirus 3 (DAdV-3), a newly emerged duck adenovirus, has resulted in significant economic losses to the duck industry across China since 2014. However, little is known about the B cell epitopes in major antigen of DAdV-3 and the serological approach for detection of DAdV-3 is not available. In this study, four monoclonal antibodies (mAbs) specific to Fiber-2 protein of DAdV-3 were first generated and designated as 2G10, 3D9, 5E6, and 6B12. Indirect immunofluorescence assay (IFA) showed that all of the mAbs reacted with the Fiber-2. Moreover, mAbs 2G10, 5E6, and 6B12 demonstrated good activity with Fiber-2 in Western blot. Notably, the Fiber-2 could be immunoprecipitated efficiently by mAb 3D9. Epitope mapping revealed that mAbs 2G10, 3D9, 5E6, and 6B12 recognized 397-429aa, 463-481aa, 67-99aa, and 1-66aa of Fiber-2, respectively. Besides, a novel sandwich ELISA for efficient detection of DAdV-3 was developed based on mAb 3D9 and horseradish peroxidase (HRP) conjugated mAb 3D9. The sandwich ELISA only reacted with DAdV-3 but not with other duck-associated viruses. The limit of detection of the ELISA was 6.25 × 103 TCID50/mL. Overall, the mAbs generated laid the foundation for elucidating the critical role of Fiber-2 in mediating infection and pathogenesis, and the sandwich ELISA approach established here provided efficient and rapid serological diagnostic tool for DAdV-3.

11.
Front Vet Sci ; 10: 1161441, 2023.
Article En | MEDLINE | ID: mdl-37252401

To evaluate the effect of the vaccine and differentiate vaccine from virulent MDV, a new quadruplex real-time PCR assay based on TaqMan probes was developed to differentiate and accurately quantify HVT, CVI988 and virulent MDV-1. The results showed that the limit of detection (LOD) of the new assay was 10 copies with correlation coefficients >0.994 of CVI988, HVT and virulent MDV DNA molecules without cross-reactivity with other avian disease viruses. The intra-assay and inter-assay coefficients of variation (CVs) of Ct values for the new assay were less than 3%. Analysis of replication kinetics of CVI988 and virulent MDV of collected feathers between 7 and 60 days post-infection (dpi) showed MD5 had no significant effect on the genomic load of CVI988 (p > 0.05), while vaccination with CVI988 could significantly reduce the viral load of MD5 (p < 0.05). Combined with meq gene PCR, this method can effectively identify virulent MDV infections in immunized chickens. These results demonstrated that this assay could distinguish between the vaccine and virulent MDV strains and had the advantages of being reliable, sensitive and specific to confirm the immunization status and monitor the circulation of virulent MDV strains.

12.
Front Microbiol ; 14: 1160031, 2023.
Article En | MEDLINE | ID: mdl-37065110

Recently, the infection of serotype 4 fowl adenovirus (FAdV-4) in chicken flocks has become endemic in China, which greatly threatens the sustainable development of poultry industry. The development of recombinant FAdV-4 expressing foreign genes is an efficient strategy for controlling both FAdV-4 and other important poultry pathogens. Previous reverse genetic technique for generating the recombinant fowl adenovirus is generally inefficient. In this study, a recombinant FAdV-4 expressing enhanced green fluorescence protein (EGFP), FA4-EGFP, was used as a template virus and directly edited fiber-2 gene to develop an efficient double-fluorescence approach to generate recombinant FAdV-4 through CRISPR/Cas9 and Cre-Loxp system. Moreover, using this strategy, a recombinant virus FAdV4-HA(H9) stably expressing the HA gene of H9N2 influenza virus was generated. Chicken infection study revealed that the recombinant virus FAdV4-HA(H9) was attenuated, and could induce haemagglutination inhibition (HI) titer against H9N2 influenza virus at early time points and inhibit the viral replication in oropharynx. All these demonstrate that the novel strategy for constructing recombinant FAdV-4 expressing foreign genes developed here paves the way for rapidly developing attenuated FAdV-4-based recombinant vaccines for fighting the diseases caused by both FAdV-4 and other pathogens.

13.
Front Cell Infect Microbiol ; 13: 1177866, 2023.
Article En | MEDLINE | ID: mdl-37065194

Recently, the highly pathogenic serotype 4 fowl adenovirus (FAdV-4) and duck adenovirus 3 (DAdV-3) were outbroken and widespread, causing substantial economic losses to the duck industry. Therefore, there is an urgent need to generate a recombinant genetic engineering vaccine candidate against both FAdV-4 and DAdV-3. In this study, a novel recombinant FAdV-4 expressing the Fiber-2 protein of DAdV-3, designated as rFAdV-4-Fiber-2/DAdV-3, was generated based on CRISPR/Cas9 and Cre-LoxP systems. Indirect immunofluorescence assay (IFA) and western blot (WB) showed that the Fiber-2 protein of DAdV-3 in rFAdV-4-Fiber-2/DAdV-3 was expressed successfully. Moreover, the growth curve revealed that rFAdV-4-Fiber-2/DAdV-3 replicated efficiently in LMH cells and even showed a stronger replication ability compared to the wild type FAdV-4. The generation of the recombinant rFAdV-4-Fiber-2/DAdV-3 provides a potential vaccine candidate against both FAdV-4 and DAdV-3.


Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Vaccines , Animals , Ducks , Adenoviridae Infections/pathology , Serogroup , Antibodies, Viral , Chickens , Aviadenovirus/genetics
14.
Poult Sci ; 102(6): 102661, 2023 Jun.
Article En | MEDLINE | ID: mdl-37037098

Avian infectious bronchitis (IB) is a highly contagious disease caused by infectious bronchitis virus (IBV). Vaccination is an effective approach for controlling IBV. Therefore, reliable immune monitoring for IB is critical for poultry. In this study, a novel peptide derived from S2 protein was used to develop an enzyme-linked immunosorbent assay (ELISA) for the detection of broadly cross-reactive antibodies against IBV. The peptide-based ELISA (pELISA) showed good specificity and sensitivity in detecting IBV antibodies against different serotypes. A semilogarithmic regression method for determining IBV antibody titers was also established. Antibody titers detected by pELISA and calculated with this equation were statistically similar to those evaluated by indirect fluorescence assay (IFA). Moreover, the comparison analysis showed a 96.07% compatibility between the pELISA and IDEXX ELISA. All these data demonstrate that the pELISA generated here can be as a rapid and reliable serological surveillance tool for monitoring IBV infection or vaccination.


Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens , Antibodies, Viral/analysis , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Peptides , Poultry Diseases/diagnosis , Poultry Diseases/prevention & control
15.
J Med Virol ; 95(3): e28657, 2023 03.
Article En | MEDLINE | ID: mdl-36912367

Novel immune escape variants have emerged as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide. Many of the variants cause breakthrough infections in vaccinated populations, posing great challenges to current antiviral strategies targeting the immunodominance of the receptor-binding domain within the spike protein. Here, we found that a novel broadly neutralizing monoclonal antibody (mAb), G5, provided efficient protection against SARS-CoV-2 variants of concern (VOCs) in vitro and in vivo. A single dose of mAb G5 could significantly inhibit the viral burden in mice challenged with the mouse-adapted SARS-CoV-2 or SARS-CoV-2 Omicron BA.1 variant, as well as the body weight loss and cytokine release induced by mouse-adapted SARS-CoV-2. The refined epitope recognized by mAb G5 was identified as 1148 FKEELDKYF1156 in the stem helix of subunit S2. In addition, a human-mouse chimeric mAb was generated based on the variable region of heavy chain and VL genes of mAb G5. Our study provides a broad antibody drug candidate against SARS-CoV-2 VOCs and reveals a novel target for developing pan-SARS-CoV-2 vaccines.


Antibodies, Monoclonal , COVID-19 , Humans , Animals , Mice , Antibodies, Monoclonal/therapeutic use , COVID-19 Vaccines , SARS-CoV-2/genetics , Immunosuppressive Agents , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use
16.
Microbiol Spectr ; 11(3): e0523522, 2023 06 15.
Article En | MEDLINE | ID: mdl-36995259

Glycogen synthase kinase 3ß (GSK3ß) is a widely distributed multifunctional serine/threonine kinase. In mammals, GSK3ß regulates important life activities such as proinflammatory response, anti-inflammatory response, immunity, and cancer development. However, the biological functions of chicken GSK3ß (chGSK3ß) are still unknown. In the present study, the full-length cDNA of chGSK3ß was first cloned and analyzed. Absolute quantification of chicken chGSK3ß in 1-day-old specific-pathogen-free birds has shown that it is widely expressed in all tissues, with the highest level in brain and the lowest level in pancreas. Overexpression of chGSK3ß in DF-1 cells significantly decreased the gene expression levels of interferon beta (IFN-ß), IFN regulatory factor 7 (IRF7), Toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5), MX-1, protein kinase R (PKR), and oligoadenylate synthase-like (OASL), while promoting the replication of avian leukosis virus subgroup J (ALV-J). Conversely, levels of most of the genes detected in this study were increased when chGSK3ß expression was knocked down using small interfering RNA (siRNA), which also inhibited the replication of ALV-J. These results suggest that chGSK3ß plays an important role in the antiviral innate immune response in DF-1 cells, and it will be valuable to carry out further studies on the biological functions of chGSK3ß. IMPORTANCE GSK3ß regulates many life activities in mammals. Recent studies revealed that chGSK3ß was involved in regulating antiviral innate immunity in DF-1 cells and also could positively regulate ALV-J replication. These results provide new insights into the biofunction of chGSK3ß and the virus-host interactions of ALV-J. In addition, this study provides a basis for further research on the function of GSK3 in poultry.


Avian Leukosis Virus , Poultry Diseases , Animals , Chickens , Avian Leukosis Virus/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3/genetics , Immunity, Innate , Antiviral Agents , Mammals
17.
J Virol ; 97(2): e0137922, 2023 02 28.
Article En | MEDLINE | ID: mdl-36749072

Despite active control strategies, including the vaccination program in poultry, H9N2 avian influenza viruses possessing mutations in hemagglutinin (HA) were frequently isolated. In this study, we analyzed the substitutions at HA residue 193 (H3 numbering) of H9N2 and investigated the impact of these mutations on viral properties. Our study indicated that H9N2 circulating in the Chinese poultry have experienced frequent mutations at HA residue 193 since 2013, with viruses that carried asparagine (N) being replaced by those with alanine (A), aspartic acid (D), glutamic acid (E), glycine (G), and serine (S), etc. Our results showed the N193G mutation impeded the multiple cycles of growth of H9N2, and although most of the variant HAs retained the preference for human-like receptors as did the wild-type N193 HA, the N193E mutation altered the preference for both human and avian-like receptors. Furthermore, these mutations substantially altered the antigenicity of H9N2 as measured by both monoclonal antibodies and antisera. In vivo studies further demonstrated that these mutations showed profound impact on viral replication and transmission of H9N2 in chicken. Viruses with D, E, or S at residue 193 acquired the ability to replicate in lungs of the infected chickens, whereas virus with G193 reduced its transmissibility in infected chickens to those in direct contact. Our findings demonstrated that variations at HA residue 193 altered various properties of H9N2, highlighting the significance of the continued surveillance of HA for better understanding of the etiology and effective control of H9N2 in poultry. IMPORTANCE H9N2 are widespread and have sporadically caused clinical diseases in humans. Extensive vaccinations in poultry helped constrain H9N2; however, they might have facilitated the evolution of the virus. It is therefore of importance to monitor the variation of the circulating H9N2 and evaluate its risk to both veterinary and public health. Here, we found substitutions at position 193 of HA from H9N2 circulated since 2013 and assessed the impact of several mutations on viral properties. Our data showed these mutations resulted in substantial antigenic change. N193E altered the binding preference of HA for human-like to both avian and human-like receptors. More importantly, N193G impaired the growth of H9N2 and its transmission in chickens, whereas mutations from N to D, E, and S enhanced the viral replication in lungs of chickens. Our study enriched the knowledge about H9N2 and may help implement an effective control strategy for H9N2.


Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Amino Acids/genetics , Chickens/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Phylogeny , Poultry
18.
Poult Sci ; 102(1): 102284, 2023 Jan.
Article En | MEDLINE | ID: mdl-36399931

Chicken infectious anemia virus (CIAV) is the pathogen of chicken infectious anemia. Currently, due to the lack of effective diagnostics technology and prevention approach, CIAV has spread globally and caused huge economic losses to poultry industry. In this study, a novel peptide-based ELISA (pELISA) for efficient detection of antibody against CIAV was developed. The peptide (25CRLRRRYKFRHRRRQRYRRRAF45) used in pELISA was highly conserved in VP1 protein of different CIAV isolates. The specificity and reproducibility showed that the pELISA only reacted with sera against CIAV, not with sera against other pathogens tested, and the CV of the intra-/inter-assay of the pELISA was 6.8 to 9.22%. Moreover, the comparison assay using 56 clinical samples showed that the positive rate of the pELISA and the commercial ELISA kit (IDEXX) was 85.7 and 80.4%, respectively. The pELISA generated here provides a rapid and efficient serological detection method for diagnosis of CIAV infection and evaluation of the efficacy of CIAV vaccination.


Chicken anemia virus , Poultry Diseases , Animals , Chickens , Reproducibility of Results , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Viral , Peptides
19.
Vet Microbiol ; 277: 109635, 2023 Feb.
Article En | MEDLINE | ID: mdl-36563583

Duck adenovirus 3 (DAdV-3), identified as the causative agent of a disease characterized by swelling and hemorrhage of liver and kidney, has caused substantial economic losses to duck industry in China. However, the neutralizing epitopes and the infection mechanism of DAdV-3 have not been extensively elucidated. In this study, a novel monoclonal antibody (mAb) targeting Fiber-2 protein of DAdV-3 was generated and designated as mAb 3E7. Indirect immunofluorescence assay showed that mAb 3E7 specifically reacted with the Fiber-2 in LMH cells transfected with pcDNA3.1-Fiber-2 or infected with DAdV-3. Moreover, mAb 3E7 could immunoprecipitate the Fiber-2 and efficiently inhibit the infection of DAdV-3 in vitro. Further epitope mapping revealed mAb 3E7 recognized the epitope 108LALGDGLE115 in Fiber-2, which was highly conserved among DAdV-3 strains. These findings not only identified a novel neutralizing epitope in Fiber-2, but also paved the way for further elucidating the vital roles of Fiber-2 in the infection and pathogenesis of DAdV-3.


Antibodies, Viral , Aviadenovirus , Animals , Ducks , Antibodies, Monoclonal , Epitopes , Epitope Mapping/veterinary
20.
J Virol Methods ; 312: 114646, 2023 02.
Article En | MEDLINE | ID: mdl-36356679

Goose gout disease is a high morbidity and mortality disease caused by novel serotype 1 goose astrovirus (GAstV-1), which has resulted in huge economic loss to the goose industry of China. However, few diagnostic methods have been developed for serological surveillance of GAstV-1. In our previous study, several novel B cell epitopes were identified in the ORF2 protein of GAstV-1. In this study, one novel peptide of 627-646 aa in the ORF2 recognized by monoclonal antibody (mAb) 6C6 was used as an antigen to develop an efficient peptide-based ELISA (pELISA) for detection of antibodies against GAstV-1. Specificity analysis showed that the pELISA only reacted with sera against GAstV-1, but not with sera against other pathogens tested. The sensitivity of the pELISA in detecting positive sera was higher than that of the IFA (Indirect immunofluorescence assay). The coefficients of variation (CV) of the intra-assay and inter-assay were both < 10%, indicating that the reproducibility of pELISA was good. For detection of clinical samples, the pELISA had 87.5% concordance with the IFA. Our data demonstrate that the pELISA generated here provides an accurate, rapid, and economical method for the detection antibodies against GAstV-1 for serological surveillance.


Geese , Peptides , Animals , Reproducibility of Results , Sensitivity and Specificity , Enzyme-Linked Immunosorbent Assay/methods
...