Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Cancer Res ; 14(5): 2538-2554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859848

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a significant cause of mortality, while the underlying mechanism remains unclear. Our studies have revealed that KIF2C plays a crucial role in tumor proliferation and metastasis in HNSCC. The results demonstrate that KIF2C is highly expressed at both the mRNA and protein levels and is closely associated with lymph node metastasis. The gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicate that the differentially expressed genes are enriched in processes or pathways related to cell adhesion and cell mitosis in HNSCC. Moreover, the established protein-protein interaction network identifies KIF2C as a potential hub gene in HNSCC. Knockdown of KIF2C has been demonstrated to significantly reduce cell migration and invasion ability, leading to cell cycle arrest, a high proportion of abnormal cell apoptosis, and cell chromosome division mismatches in the HNSCC cell line. Downstream genes such as PDGFA, EGFR, TP63, SNAI2, KRT5, and KRT14 were found to be down-regulated, and multiple critical pathways, including mTOR, ERK, and PI3K-AKT pathways, were inactivated as a result of KIF2C knockdown. These findings provide strong evidence for the crucial role of KIF2C in HNSCC and suggest that targeting KIF2C may be a promising therapeutic strategy for this disease. Knockdown of KIF2C has been shown to significantly inhibit tumor proliferation in nude mice, demonstrating the potential therapeutic role of KIF2C in HNSCC treatment.

2.
Int J Nanomedicine ; 19: 1097-1108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327597

RESUMEN

Introduction: Osteosarcoma is a prevalent and highly malignant primary bone tumor. However, current clinical therapeutic drugs for osteosarcoma are not suitable for long-term use due to significant side effects. Therefore, there is an urgent need to develop new drugs with fewer side effects. Dipsacus asperoides C. Y. Cheng et T. M. Ai, a traditional Chinese medicine, is commonly used for its anti-inflammatory, anti-pain, bone fracture healing, and anti-tumor effects. In this study, we investigated the effects of exosome-like nanoparticles derived from Dipsacus asperoides (DAELNs) on osteosarcoma cells in vitro and in vivo. Methods: DAELNs were isolated and purified from Dipsacus asperoides and their physical and chemical properties were characterized using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The cellular uptake of DAELNs in osteosarcoma cells was analyzed by PKH26 staining. The proliferation, invasion, migration, and apoptosis of osteosarcoma cells were assessed using CCK8 assay, EdU assay, colony-formation assay, transwell assay, wound healing assay, and mitochondrial membrane potential measurement, respectively. The regulatory mechanism of DAELNs inhibiting the progression of osteosarcoma via activating P38/JNK signaling pathway was investigated using Western blotting and immunohistochemistry. Moreover, the therapeutic effects of DAELNs were evaluated using in vivo small animal imaging assay, HE staining, and immunohistochemistry. Results: Our results showed that DAELNs inhibited the proliferation, invasion, migration, and fostered the apoptosis of osteosarcoma cells in vitro and suppressed the tumor growth of osteosarcoma cells in a xenograft nude mouse model. Furthermore, the bio-distribution of DiD-labeled DAELNs showed preferential targeting of osteosarcoma tumors and excellent biosafety in histological analysis of the liver and kidney. Mechanistically, DAELNs activated the P38/JNK signaling pathway-induced apoptosis. Conclusion: Taken together, DAELNs are novel, natural, and osteosarcoma-targeted agents that can serve as safe and effective therapeutic approaches for the treatment of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Dipsacaceae , Exosomas , Osteosarcoma , Humanos , Ratones , Animales , Sistema de Señalización de MAP Quinasas , Dipsacaceae/química , Exosomas/metabolismo , Apoptosis , Osteosarcoma/patología , Línea Celular Tumoral , Neoplasias Óseas/patología , Modelos Animales de Enfermedad , Proliferación Celular , Movimiento Celular
3.
J Cancer ; 15(5): 1287-1298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356713

RESUMEN

Objective: Most patients with osteosarcoma (OS) have an extremely poor prognosis. The primary purpose of this investigation was to explore the biological effect of Lnc-CLSTN2-1:1 on OS and the potential processes involved. Materials and procedures: We selected differentially overexpressed Lnc-CLSTN2-1:1 from our laboratory's existing RNA sequence analysis data (fibroblast osteoblast (hFOB 1.19) and three osteosarcoma cell lines (HOS, MG63, and U2OS) as the research object. Next, we detected Lnc-CLSTN2-1:1 in the osteosarcoma HOS cell line and fibroblast cells using qRT-PCR. We evaluated cell proliferation ability using EdU incorporation test, CCK-8 test, and cell clone formation; cell invasion and migration were assessed using the Transwell test, while flow cytometry examined cell cycle, apoptosis, and reactive oxygen species (ROS); Subsequently, the activity changes of selenase (GPx) glutathione peroxidase and (TrxR) thioredoxin reductase were detected. In addition, changes in related proteins were analyzed through Western blotting. Results: The expression of Lnc-CLSTN2-1:1 in osteosarcoma cells was significantly increased. The proliferation, invasion, and migration of osteosarcoma cells were significantly inhibited by knockdown of the expression of Lnc-CLSTN2-1:1, and the cell cycle-related signaling pathway PI3K/AKT/GSK-3ß/cycinD1 was also inhibited. However, insulin-like growth factor-1 (igf-1) could reverse this process. In addition, we examined the activity of two selenophenases (TrxR and GPx) and the changes of ROS before and after Lnc-CLSTN2-1:1 knockdown. The results showed that both TrxR and GPx activities were reduced after Lnc-CLSTN2-1:1 knockdown, resulting in the inhibition of antioxidant stress levels, while intracellular ROS levels were high, which eventually caused killing effects on tumor cells due to the imbalance between oxidative stress and antioxidant stress. Conclusion: Our results showed that Lnc-CLSTN2-1:1 enhanced anti-oxidative stress TrxR and GPx selenoprotein activities through the PI3K/AKT signaling pathway while counteracting the loss of reactive oxygen species ROS produced by mitochondria to osteosarcoma cells, which protected osteosarcoma cells and thus promoted the proliferation and metastatic ability of OS.

4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674593

RESUMEN

Gastric cancer is a common malignant tumor originating from the gastric mucosa epithelium. Studies have shown that bioactive substances such as antimicrobial peptides and cantharidin contained in a variety of insects can exert anti-cancer functions; when compared with chemotherapy drugs, these bioactive substances have less toxicity and reduced side effects. Here, we report the first Bombyx mori carboxypeptidase inhibitor that is specifically and highly expressed in silk glands, which can significantly prevent the proliferation of gastric cancer cells by inhibiting the MAPK/ERK pathway initiated by EGF/EGFR through the promotion of expression of the proto-oncogene c-Myc, thereby affecting the expression of related cyclins. Through molecular docking and virtual screening of silkworm carboxypeptidase inhibitors and epidermal growth factor receptors, we identified a polypeptide that overlapped with existing small-molecule inhibitors of the receptor. In the present work, we explore the medicinal potential and application of silkworm carboxypeptidase inhibitors to promote the development of anti-tumor drugs from insect-derived substances.


Asunto(s)
Antineoplásicos , Bombyx , Neoplasias Gástricas , Animales , Humanos , Bombyx/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Proliferación Celular , Carboxipeptidasas/metabolismo
5.
Int J Med Sci ; 19(9): 1377-1387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035366

RESUMEN

Osteosarcoma is the most common malignant tumor in adolescent bone malignancies. It has the characteristics of a high metastasis rate, high mortality and poor prognosis. As a subclass of endogenous noncoding RNAs, circRNAs have been identified to be related to the occurrence, development and prognosis of different kinds of cancers, but the mechanism of their effect on osteosarcoma is not clear. In the present study, we identified a novel circRNA, hsa_circ_0087302, by RNA-seq, and we found that it was expressed at low levels in osteosarcoma. Using RT-PCR, we confirmed that the expression of hsa_circ_0087302 in osteosarcoma cells was lower than that in osteoblasts. Functional validation experiments revealed that hsa_circ_0087302 overexpression inhibited proliferation, cell cycle, migration, and invasion in osteosarcoma cells. Furthermore, Western blotting experiments demonstrated that hsa_circ_0087302 affected the expression of cell cycle- and Wnt/ß-catenin signaling pathway-related proteins. For the first time, we identified that hsa_circ_0087302 may affect the malignant biological behavior of osteosarcoma cells through the Wnt/ß-catenin signaling pathway. In summary, hsa_circ_0087302 may provide a new direction for the diagnosis and treatment of osteosarcoma.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Adolescente , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Circular , Vía de Señalización Wnt
6.
Genes (Basel) ; 12(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34356052

RESUMEN

Although ignored in the past, with the recent deepening of research, significant progress has been made in the field of non-coding RNAs (ncRNAs). Accumulating evidence has revealed that microRNA (miRNA) response elements regulate RNA. Long ncRNAs, circular RNAs, pseudogenes, miRNAs, and messenger RNAs (mRNAs) form a competitive endogenous RNA (ceRNA) network that plays an essential role in cancer and cardiovascular, neurodegenerative, and autoimmune diseases. Gastric cancer (GC) is one of the most common cancers, with a high degree of malignancy. Considerable progress has been made in understanding the molecular mechanism and treatment of GC, but GC's mortality rate is still high. Studies have shown a complex ceRNA crosstalk mechanism in GC. lncRNAs, circRNAs, and pseudogenes can interact with miRNAs to affect mRNA transcription. The study of the involvement of ceRNA in GC could improve our understanding of GC and lead to the identification of potential effective therapeutic targets. The research strategy for ceRNA is mainly to screen the different miRNAs, lncRNAs, circRNAs, pseudogenes, and mRNAs in each sample through microarray or sequencing technology, predict the ceRNA regulatory network, and, finally, conduct functional research on ceRNA. In this review, we briefly discuss the proposal and development of the ceRNA hypothesis and the biological function and principle of ceRNAs in GC, and briefly introduce the role of ncRNAs in the GC's ceRNA network.


Asunto(s)
ARN Circular/genética , ARN no Traducido/genética , Neoplasias Gástricas/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Helicobacter pylori , Humanos , MicroARNs/genética , Análisis por Micromatrices , Seudogenes , ARN Largo no Codificante/genética , ARN Mensajero/genética , Elementos de Respuesta
7.
Cells ; 8(9)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443513

RESUMEN

Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is a key enzyme in de novo nucleotide synthesis and nucleotide salvage synthesis pathways that are critical for purine and pyrimidine biosynthesis. Abnormally high expression of PRPS1 can cause many diseases, including hearing loss, hypotonia, and ataxia, in addition to being associated with neuroblastoma. However, the role of PRPS1 in neuroblastoma is still unclear. In this study, we found that PRPS1 was commonly expressed in neuroblastoma cells and was closely related to poor prognosis for cancer. Furthermore, down-regulation of PRPS1 inhibited neuroblastoma cell proliferation and tumor growth in vitro and in vivo via disturbing DNA synthesis. This study provides new insights into the treatment of neuroblastoma patients and new targets for drug development.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Bromodesoxiuridina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Ribosa-Fosfato Pirofosfoquinasa/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
8.
J Environ Manage ; 239: 299-305, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913480

RESUMEN

Carbon source, operation mode and microbial species have great effects on the synthesis of poly-ß-hydroxybutyrate (PHB) which has been identified as the key issue for aerobic denitrification process. In this study, an aerobic denitrification SBR was operated under anoxic/oxic mode and completely oxic mode with the carbon source of CH3COONa and CH3CH2CH2COONa, respectively. Total nitrogen (TN) removal efficiencies, PHB content in activated sludge, production of nitric oxide (NO) and nitrous oxide (N2O) of the process were investigated in great detail. The main results obtained from the trial were: (1) the average TN removal was in the range of 86.11%-90.05%; (2) the maximum TN removal efficiency and the maximum PHB content of the process being achieved when the carbon source of CH3CH2CH2COONa was applied under anoxic/oxic mode; (3) in case of CH3COONa as the carbon source, the concentrations of NO and N2O in the bulk liquid were ∼0.4 mg/L and ∼0.02 mg/L, respectively, while in case of CH3CH2CH2COONa, N2O of ∼0.2 mg/L and NO of ∼2.5 mg/L were recorded and the latter was decreased to ∼1.0 mg/L at the end of the cycle; (4) no obvious dominant genus in case of using CH3COONa, while Plasticicumulans sp. being the major microbial community when using CH3CH2CH2COONa. Overall, the effect of carbon source on microbial community is obvious. Nevertheless, operation mode affects the PHB synthesis, while PHB plays an important role in aerobic denitrification process for achieving a relatively high TN nitrogen removal efficiency. CH3COONa is a better carbon source for aerobic denitrification compared with CH3CH2CH2COONa.


Asunto(s)
Carbono/metabolismo , Microbiota , Desnitrificación , Hidroxibutiratos/metabolismo , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Poliésteres/metabolismo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos
9.
Int J Clin Pharm ; 40(4): 911-920, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30051228

RESUMEN

Background A pharmacovigilance database of real-world adverse drug reaction (ADR) reports is helpful for characterising adverse events and identifying new signals after drug approval. Objective This study aimed to analyse trends of ADR reporting in relation to liver injury and to delineate critical factors for suspected drug-related hepatotoxicity with a focus on reports associated with amiodarone. Setting The 2000-2014 Taiwan pharmacovigilance database. Method Relevant Standardized Medical Dictionary for Regulatory Activities queries were used to identify reports associated with liver injury. Information on ADR, patient characteristics, and the verbatim pertaining to amiodarone prescriptions, liver injury, comedications, and comorbidities were extracted and evaluated. Group comparisons between Hy's Law cases and Temple's Corollary cases of suspected amiodarone-related hepatotoxicity were performed. Main outcome measure Number and nature of drug-related liver injuries, particularly those associated with amiodarone. Results Of the 98,777 ADR reports over a 15-year period, 4261 (4.3%) were related to liver injury. Sixty-eight reports contained amiodarone prescriptions, but only 49 (1.1%) were eligible for further analysis. Hepatotoxic cases associated with amiodarone mostly occurred within 1 week, exhibited a hepatocellular pattern, and were more common among elderly individuals. Among 23 discernible cases, four (17.4%) recovered fully from liver injury. The critical Hy's Law cases were associated with shorter height, lower body surface area, and higher average daily doses. Conclusion This study substantiates the importance of ADR reporting. Data pertaining to drug-associated liver injury and factors associated with suspected amiodarone-related hepatotoxicity warrants continual attention in pharmacovigilance for those at risk, especially the elderly.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos/tendencias , Amiodarona/efectos adversos , Antiarrítmicos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/epidemiología , Farmacovigilancia , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Estatura , Superficie Corporal , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Bases de Datos Factuales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Taiwán/epidemiología , Factores de Tiempo
10.
Water Sci Technol ; 77(1-2): 187-195, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29339617

RESUMEN

In order to study the characteristics of nitrous oxide (N2O) production and hydroxylamine (NH2OH) variation under oxic conditions, concentrations of NH2OH and N2O were simultaneously monitored in a short-cut nitrification sequencing batch reactor (SBR) operated with different influent ammonia concentrations. In the short-cut nitrification process, N2O production was increased with the increasing of ammonia concentration in influent. The maximum concentrations of dissolved N2O-N in the reactor were 0.11 mg/L and 0.52 mg/L when ammonia concentrations in the influent were 50 mg/L and 70 mg/L respectively. Under the low and medium ammonia load phases, the concentrations of NH2OH-N in the reactor were remained at a low level which fluctuated around 0.06 mg/L in a small range, and did not change with the variation of influent NH4+-N concentration. Based on the determination results, the half-saturation of NH2OH in the biochemical conversion process of NH2OH to NO2--N was very small, and the value of 0.05 mg NH2OH-N/L proposed in the published literature was accurate. NH2OH is an important intermediate in the nitrification process, and the direct determination of NH2OH in the nitrification process was beneficial for revealing the kinetic process of NH2OH production and consumption as well as the effects of NH2OH on N2O production in the nitrification process.


Asunto(s)
Reactores Biológicos/microbiología , Hidroxilamina/análisis , Óxido Nitroso/análisis , Purificación del Agua/métodos , Amoníaco/análisis , Amoníaco/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Hidroxilamina/metabolismo , Nitrificación , Óxido Nitroso/metabolismo , Aguas del Alcantarillado/química , Aguas Residuales/química
11.
Int J Mol Sci ; 17(8)2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27483237

RESUMEN

The silkworm (Bombyx mori) is an economically-important insect that can secrete silk. Carboxypeptidases have been found in various metazoan species and play important roles in physiological and biochemical reactions. Here, we analyzed the silkworm genome database and characterized 48 carboxypeptidases, including 34 metal carboxypeptidases (BmMCP1-BmMCP34) and 14 serine carboxypeptidases (BmSCP1-BmSCP14), to better understand their diverse functions. Compared to other insects, our results indicated that carboxypeptidases from silkworm have more family members. These silkworm carboxypeptidases could be divided into four families: Peptidase_M2 carboxypeptidases, Peptidase_M14 carboxypeptidases, Peptidase_S10 carboxypeptidases and Peptidase_S28 carboxypeptidases. Microarray analysis showed that the carboxypeptidases had distinct expression patterns, whereas quantitative real-time PCR demonstrated that the expression level of 13 carboxypeptidases significantly decreased after starvation and restored after re-feeding. Overall, our study provides new insights into the functional and evolutionary features of silkworm carboxypeptidases.


Asunto(s)
Bombyx/genética , Carboxipeptidasas/clasificación , Carboxipeptidasas/genética , Genoma de los Insectos/genética , Animales , Bombyx/enzimología , Perfilación de la Expresión Génica , Familia de Multigenes , Filogenia , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Am J Nephrol ; 39(4): 337-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24751828

RESUMEN

BACKGROUND: Toll-like receptor 4 (TLR4) plays a key role in mediating kidney damage during ischemia/reperfusion (I/R) injury, and its expression is enhanced following renal I/R injury. Our study focused on TLR4 silencing-mediated downstream antiapoptotic pathways during hypoxia/reoxygenation (H/R) and investigated whether TLR4 overexpression exacerbates the renal damage induced by I/R injury. METHODS: Proximal tubule epithelial cells (PTECs) were isolated and H/R injury mediated by ATP depletion, and replenishment was performed to mimic in vivo I/R injury. PTECs were transfected with either TLR4 siRNA or TLR4-overexpressing vectors to determine the contribution of TLR4 to H/R injury-induced apoptosis and inflammatory response. RESULTS: H/R injury significantly enhanced PTEC apoptosis (p < 0.01) and the production of tumor necrosis factor (TNF)-α and interleukin (IL)-8; however, TLR4 silencing significantly reversed these effects (p < 0.05). Moreover, compared to PTECs or PTECs-siCon exposed to H/R injury, overexpression of TLR4 further upregulated TNF-α and IL-8 (p < 0.05), but did not enhance apoptosis. The expression of cytochrome C and caspases 3, 8, and 9 was decreased in the siTLR4 group compared to controls after H/R injury, whereas TLR4 silencing did not alter CHOP expression. TLR4 overexpression failed to promote the expression of cytochrome C and caspases 3, 8, and 9, and reduced the expression of CHOP and GPR78. CONCLUSIONS: Knockdown of TLR4 could protect PTECs from H/R injury via inhibiting mitochondrial and death receptor pathways. TLR4 overexpression did not increase PTEC apoptosis induced by H/R injury due in part to the downregulation of CHOP.


Asunto(s)
Lesión Renal Aguda/metabolismo , Apoptosis , Hipoxia/metabolismo , Nefritis/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Células Epiteliales/fisiología , Túbulos Renales Proximales/metabolismo , Masculino , Mitocondrias/metabolismo , Ratas Wistar , Receptores de Muerte Celular/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...