Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Int J Biochem Cell Biol ; 169: 106539, 2024 Apr.
Article En | MEDLINE | ID: mdl-38290690

Doxorubicin (DOX), a widely used chemotherapy agent in cancer treatment, encounters limitations in clinical efficacy due to associated cardiotoxicity. This study aims to explore the role of AKT serine/threonine kinase 2 (AKT2) in mitigating DOX-induced oxidative stress within the heart through both intracellular and extracellular signaling pathways. Utilizing Akt2 knockout (KO) and Nrf2 KO murine models, alongside neonatal rat cardiomyocytes (NRCMs), we systematically investigate the impact of AKT2 deficiency on DOX-induced cardiac injury. Our findings reveal that DOX administration induces significant oxidative stress, a primary contributor to cardiac injury. Importantly, Akt2 deficiency exhibits a protective effect by alleviating DOX-induced oxidative stress. Mechanistically, Akt2 deficiency facilitates nuclear translocation of NRF2, thereby suppressing intracellular oxidative stress by promoting the expression of antioxidant genes. Furthermore, We also observed that AKT2 inhibition facilitates superoxide dismutase 2 (SOD2) expression both inside macrophages and SOD2 secretion to the extracellular matrix, which is involved in lowering oxidative stress in cardiomyocytes upon DOX stimulation. The present study underscores the important role of AKT2 in mitigating DOX-induced oxidative stress through both intracellular and extracellular signaling pathways. Additionally, our findings propose promising therapeutic strategies for addressing DOX-induced cardiomyopathy in clinic.


Myocytes, Cardiac , NF-E2-Related Factor 2 , Rats , Mice , Animals , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/metabolism , Doxorubicin/adverse effects , Oxidative Stress , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Apoptosis
2.
Life Sci ; 341: 122474, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38296191

AIMS: This work sought to investigate the mechanism underlying the STING signaling pathway during myocardial infarction (MI), and explore the involvement and the role of SIRT6 in the process. MAIN METHODS: Mice underwent the surgery of permanent left anterior descending (LAD) artery constriction. Primary cardiomyocytes (CMs) and fibroblasts were subjected to hypoxia to mimic MI in vitro. STING expression was assessed in the infarct heart, and the effect of STING inhibition on cardiac fibrosis was explored. This study also evaluated the regulatory effect of STING by SIRT6 in macrophages. KEY FINDINGS: STING protein was increased in the infarct heart tissue, highlighting its involvement in the post-MI inflammatory response. Hypoxia-induced death of CMs and fibroblasts contributed to the upregulation of STING in macrophages, establishing the involvement of STING in the intercellular signaling during MI. Inhibition of STING resulted in a significant reduction of cardiac fibrosis at day 14 after MI. Additionally, this study identified SIRT6 as a key regulator of STING via influencing its acetylation and ubiquitination in macrophages, providing novel insights into the posttranscriptional modification and expression of STING at the acute phase after myocardial infarction. SIGNIFICANCE: This work shows the key role of SIRT6/STING signaling in the pathogenesis of cardiac injury after MI, suggesting that targeting this regulatory pathway could be a promising strategy to attenuate cardiac fibrosis after MI.


Heart Injuries , Myocardial Infarction , Sirtuins , Animals , Mice , Disease Models, Animal , Fibrosis , Heart Injuries/metabolism , Hypoxia/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , Sirtuins/metabolism
3.
Life Sci ; 338: 122386, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38159594

Diabetic retinopathy is a complex and progressive ocular complication of diabetes mellitus and is a leading cause of blindness in people of working age worldwide. The pathophysiology of diabetic retinopathy involves multifactorial processes, including oxidative stress, inflammation and vascular abnormalities. Understanding the underlying molecular mechanisms involved in its pathogenesis is essential for the development of effective therapeutic interventions. One of the pathways receiving increasing attention is the Keap1-Nrf2 signaling pathway, which regulates the cellular response to oxidative stress by activating Nrf2. In this review, we analyze the current evidence linking Keap1-Nrf2 signaling pathway dysregulation to diabetic retinopathy. In addition, we explore the potential therapeutic implications and the challenges of targeting this pathway for disease management. A comprehensive understanding of the molecular mechanisms of diabetic retinopathy and the therapeutic potential of the Keap1-Nrf2 pathway may pave the way for innovative and effective interventions to combat this vision-threatening disease.


Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/therapy , Diabetic Retinopathy/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction
4.
Life Sci ; 333: 122187, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37858715

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose homeostasis. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defense systems, plays a significant role in the development and progression of T2DM. The sirtuin family, particularly Sirt1, Sirt3, and Sirt6, have emerged as key regulators of oxidative stress in various cellular processes. This review aims to explore the role of the sirtuin family in oxidative stress during the progression of T2DM and their potential as therapeutic targets. We discussed the mechanisms through which sirtuins modulate oxidative stress, their impact on insulin sensitivity, and beta-cell function involved in T2DM. Furthermore, we highlight drugs targeting sirtuin activation and related complications in T2DM. This review summarizes the role as well as mechanism of sirtuins in the regulation of oxidative stress in T2DM and available drugs targeting sirtuins in clinic, which may provide novel insights into the mechanism and therapy of T2DM.


Diabetes Mellitus, Type 2 , Sirtuin 3 , Sirtuins , Humans , Sirtuins/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Oxidative Stress , Sirtuin 3/metabolism , Antioxidants/metabolism
5.
Pulm Pharmacol Ther ; 83: 102259, 2023 Dec.
Article En | MEDLINE | ID: mdl-37726074

BACKGROUND: Acute pneumonia induced by Pseudomonas aeruginosa is characterized by massive infiltration of inflammatory cell and the production of reactive oxygen species (ROS), which lead to severe and transient pulmonary inflammation and acute lung injury. However, P.aeruginosa infection is resistant to multiple antibiotics and causes high mortality in clinic, the search for alternative prophylactic and therapeutic strategies is imperative. PURPOSE: This study was aimed to investigate the anti-inflammatory and antioxidant effects of DMB, a novel derivative of berberine, and explore the role of AIM2 inflammasome in P. aeruginosa-induced acute pneumonia. METHODS: Acute pneumonia mice were established by tracheal injection of P. aeruginosa suspension. Pathological changes of lung tissue were observed by its appearance and H&E staining. The lung coefficient ratio was measured to evaluate pulmonary edema. Inflammatory factors were detected by qRT-PCR, western blotting and immunohistochemistry. ROS and other indicators of oxidative damage were analyzed by flow cytometry and specific kit. Proteins related to AIM2 inflammasome were detected by western blotting. RESULTS: Compared with the P. aeruginosa-induced group, DMB ameliorated pulmonary edema, hyperemia, and pathological damage based on its appearance and H&E staining in DMB groups. First, DMB attenuated the inflammatory response induced by P.aeruginosa. Compared with the P. aeruginosa-induced group, the lung coefficient ratio was decreased by 31.5%, the MPO activity of lung tissue was decreased by 44.0%, the mRNA expression levels of TNF-α, IL-1ß and IL-6 were decreased by 64.8%, 51.2% and 64.0% respectively, and those protein expression levels were decreased by 40.1%, 42.8% and 47.8% respectively, and the number of white blood cells, neutrophils and monocytes were decreased by 53.5%, 29.4% and 13.7% in high dose (200 mg/kg) DMB group. Second, DMB alleviates oxidative stress in the lung tissue during P. aeruginosa-induced acute pneumonia. Compared with the P. aeruginosa-induced group, the level of GSH was increased by 42.5% and MDA was decreased by 49.5% in high dose DMB group. Moreover, the western blotting results showed that DMB markedly suppressed the expression of AIM2, ASC, Cleaved caspase1 and decreased the secretion of IL-1ß. Additionally, these results were also confirmed by in vitro experiments using MH-S and BEAS-2B cell lines. CONCLUSIONS: Taken together, these results indicated that DMB ameliorates P. aeruginosa-induced acute pneumonia through anti-inflammatory, antioxidant effects, and inhibition of AIM2 inflammasome activation.


Pneumonia , Pulmonary Edema , Animals , Mice , Inflammasomes/adverse effects , Inflammasomes/metabolism , Pseudomonas aeruginosa , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Pulmonary Edema/drug therapy , Pneumonia/drug therapy , Pneumonia/chemically induced , Oxidative Stress , Anti-Inflammatory Agents/adverse effects
6.
Clin Sci (Lond) ; 137(10): 823-841, 2023 05 31.
Article En | MEDLINE | ID: mdl-37184210

The present study aims to investigate the role of AKT2 in the pathogenesis of hepatic and cardiac lipotoxicity induced by lipid overload-induced obesity and identify its downstream targets. WT and Akt2 KO mice were fed either normal diet, or high-fat diet (HFD) to induce obesity model in vivo. Human hepatic cell line (L02 cells) and neonatal rat cardiomyocytes (NRCMs) were used as in vitro models. We observed that during HFD-induced obesity, Akt2 loss-of-function mitigated lipid accumulation and oxidative stress in the liver and heart tissue. Mechanistically, down-regulation of Akt2 promotes SIRT6 expression in L02 cells and NRCMs, the latter deacetylates SOD2, which promotes SOD2 activity and therefore alleviates oxidative stress-induced injury of hepatocytes and cardiomyocytes. Furthermore, we also proved that AKT2 inhibitor protects hepatocytes and cardiomyocytes from HFD-induced oxidative stress. Therefore, our work prove that AKT2 plays an important role in the regulation of obesity-induced lipid metabolic disorder in the liver and heart. Our study also indicates AKT2 inhibitor as a potential therapy for obesity-induced hepatic and cardiac injury.


Diet, High-Fat , Sirtuins , Humans , Animals , Mice , Rats , Diet, High-Fat/adverse effects , Liver/metabolism , Oxidative Stress , Obesity/metabolism , Myocytes, Cardiac/metabolism , Sirtuins/metabolism , Lipids , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism
7.
Cell Biol Toxicol ; 39(4): 1489-1507, 2023 08.
Article En | MEDLINE | ID: mdl-35798905

The sirtuin 6 (SIRT6) participates in regulating glucose and lipid homeostasis. However, the function of SIRT6 in the process of cardiac pathogenesis caused by obesity-associated lipotoxicity remains to be unveiled. This study was designed to elucidate the role of SIRT6 in the pathogenesis of cardiac injury due to nutrition overload-induced obesity and explore the downstream signaling pathways affecting oxidative stress in the heart. In this study, we used Sirt6 cardiac-specific knockout murine models treated with a high-fat diet (HFD) feeding to explore the function and mechanism of SIRT6 in the heart tissue during HFD-induced obesity. We also took advantage of neonatal cardiomyocytes to study the role and downstream molecules of SIRT6 during HFD-induced injury in vitro, in which intracellular oxidative stress and mitochondrial content were assessed. We observed that during HFD-induced obesity, Sirt6 loss-of-function aggravated cardiac injury including left ventricular hypertrophy and lipid accumulation. Our results evidenced that upon increased fatty acid uptake, SIRT6 positively regulated the expression of endonuclease G (ENDOG), which is a mitochondrial-resident molecule that plays an important role in mitochondrial biogenesis and redox homeostasis. Our results also showed that SIRT6 positively regulated superoxide dismutase 2 (SOD2) expression post-transcriptionally via ENDOG. Our study gives a new sight into SIRT6 beneficial role in mitochondrial biogenesis of cardiomyocytes. Our data also show that SIRT6 is required to reduce intracellular oxidative stress in the heart triggered by high-fat diet-induced obesity, involving the control of ENDOG/SOD2.


Oxidative Stress , Sirtuins , Mice , Animals , Oxidative Stress/physiology , Sirtuins/metabolism , Obesity/etiology , Obesity/metabolism , Lipids
8.
Clin Sci (Lond) ; 136(22): 1711-1730, 2022 11 30.
Article En | MEDLINE | ID: mdl-36315407

Metformin is accepted as a first-line drug for the therapy of Type 2 diabetes (T2D), while its mechanism is still controversial. In the present study, by taking advantage of mouse model of high-fat-diet (HFD)-induced obesity and primary mouse hepatocytes (PMHCs) as well as human hepatocyte L02 cell line, we aimed to investigate the involvement of SIRTs during the application of metformin for the therapy of T2D. Our data evidenced that during HFD-induced obesity, there was elevation of nucleus protein acetylation. Analysis of liver tissue showed that among all SIRT members, SIRT6 expression was significantly down-regulated during HFD feeding, which was sustained to regular level with metformin administration. Our result also showed that SIRT6 suppressed intracellular oxidative stress upon FAs stimulation in PMHCs and L02 cells. Mechanistically, SIRT6, but not SIRT1 promoted PGC-1α expression. We further prove that ENDOG is downstream of PGC-1α. In addition, we evidenced that ENDOG protects hepatocytes from lipid-induced oxidative stress, and down-regulation of Endog blunted the protective role of metformin in defending against FAs-induced oxidative stress. Our study established a novel mechanism of metformin in counteracting lipid-induced hepatic injury via activating SIRT6/PGC-1α/ENDOG signaling, thus providing novel targets of metformin in the therapy of T2D.


Diabetes Mellitus, Type 2 , Metformin , Sirtuins , Mice , Animals , Humans , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Hepatocytes/metabolism , Diet, High-Fat/adverse effects , Oxidative Stress , Sirtuins/genetics , Sirtuins/metabolism , Obesity/metabolism , Lipids
9.
Biochem Biophys Res Commun ; 603: 144-152, 2022 05 07.
Article En | MEDLINE | ID: mdl-35290918

Pro-inflammatory cytokines play important roles in sepsis-induced cardiac injury. Among various cytokines, the function of Interleukin-6 (IL-6) in the regulation of cardiomyocyte injury remains to be elucidated. This study aimed to investigate whether IL-6 plays a key role in the sepsis-induced cardiomyocyte injury and the possible mechanism. Mice deficient for Il-6 exhibited impaired heart rhythm after LPS stimulation. Histological analysis revealed significantly increased oxidative stress after LPS stimulation in the heart with Il-6 knockout. On the contrary, IL-6 supplementation alleviated LPS-induced oxidative stress. Mechanically, IL-6 facilitates Nrf2 expression and its nucleus translocation, which subsequently promotes the expression of antioxidant genes and sustains redox homeostasis in cardiomyocytes, and Nrf2 deletion results in elevated oxidative stress during LPS stimulation and cannot be inverted by IL-6 supplement. Our study presents a new sight for the protective role of IL-6 during the pathological development of LPS-induced cardiac injury, which functions as an anti-oxidant molecule via activating Nrf2 signaling.


NF-E2-Related Factor 2 , Sepsis , Animals , Antioxidants/pharmacology , Cytokines/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Mice , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Sepsis/metabolism
10.
Biochem Biophys Res Commun ; 589: 123-130, 2022 01 22.
Article En | MEDLINE | ID: mdl-34906902

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder with intricate etiology. It is closely associated with metabolic syndrome, insulin resistance and endoplasmic reticulum (ER) stress. Exostosin1 (Ext1) is an ER-resident transmembrane glycosyltransferase, which plays an important role in ER homeostasis. Loss-of-function mutations in Ext1 link to hereditary multiple exostosis (HME). The present research was undertaken to identify the effect of Ext1 in the progress of NAFLD. High-fat-diet induced mice obesity, hepatic steatosis and decreased hepatic Ext1 expression. In consistent with evaluation of NAFLD mice possessing down-regulated Ext1 expression, free fatty acid (FFA) treatment blunted Ext1 expression in hepatocytes. In human subjects, HME patients presented elevated fasting blood glucose-one of the criteria that define insulin resistance. In vitro experiments, Ext1 deficiency promoted FFA-induced insulin resistance in hepatocytes by analysis of glycogen storage and hallmarks of gluconeogenesis, ascertaining its association with insulin resistance. Mechanically, Ext1 silencing exacerbated ER stress triggered by FFA, which severely disrupted autophagy in hepatocytes, and thereby accelerated the progression of NAFLD. In conclusion, our study demonstrates a beneficial role for Ext1 during the development of NAFLD, which establishes a novel correlation between Ext1 and ER stress-induced perturbations of autophagy during NAFLD progression.


N-Acetylglucosaminyltransferases/metabolism , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , Animals , Autophagy , Cell Line , Down-Regulation , Endoplasmic Reticulum Stress , Fatty Acids, Nonesterified/metabolism , Gene Silencing , Gluconeogenesis , Hepatocytes/enzymology , Hepatocytes/pathology , Insulin Resistance , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Obese , N-Acetylglucosaminyltransferases/deficiency
11.
Cell Prolif ; 54(3): e12979, 2021 Mar.
Article En | MEDLINE | ID: mdl-33522069

OBJECTIVE: Due to limited immunological profiles of high-grade serous ovarian cancer (HGSOC), we aimed to characterize its molecular features to determine whether a specific subset that can respond to immunotherapy exists. MATERIALS AND METHODS: A training cohort of 418 HGSOC samples from TCGA was analysed by consensus non-negative matrix factorization. We correlated the expression patterns with the presence of immune cell infiltrates, immune regulatory molecules and other genomic or epigenetic features. Two independent cohorts containing 482 HGSOCs and in vitro experiments were used for validation. RESULTS: We identified immune and non-immune groups where the former was enriched in signatures that reflect immune cells, infiltration and PD-1 signalling (all, P < 0.001), and presented with a lower chromosomal aberrations but increased neoantigens, tumour mutation burden, and microsatellite instability (all, P < 0.05); this group was further refined into two microenvironment-based subtypes characterized by either immunoactivation or carcinoma-associated fibroblasts (CAFs) and distinct prognosis. CAFs-immune subtype was enriched for factors that mediate immunosuppression and promote tumour progression, including highly expressed stromal signature, TGF-ß signalling, epithelial-mesenchymal transition and tumour-associated M2-polarized macrophages (all, P < 0.001). Robustness of these immune-specific subtypes was verified in validation cohorts, and in vitro experiments indicated that activated-immune subtype may benefit from anti-PD1 antibody therapy (P < 0.05). CONCLUSION: Our findings revealed two immune subtypes with different responses to immunotherapy and indicated that some HGSOCs may be susceptible to immunotherapies or combination therapies.


Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Ovarian Neoplasms/pathology , Tumor Microenvironment/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Cystadenocarcinoma, Serous/drug therapy , Epithelial-Mesenchymal Transition/immunology , Female , Gene Expression Profiling/methods , Humans , Immunotherapy/methods , Ovarian Neoplasms/genetics , Prognosis , Tumor Microenvironment/immunology
12.
Clin Sci (Lond) ; 134(17): 2381-2398, 2020 09 18.
Article En | MEDLINE | ID: mdl-32880392

Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial. The present study aims to investigate whether AKT2 deficiency causes deficits in skeletal muscle development and metabolism, we analyzed the expression of molecules related to skeletal muscle development, glucose uptake and metabolism in mice of 3- and 8-months old. We found that AMP-activated protein kinase (AMPK) phosphorylation and myocyte enhancer factor 2 (MEF2) A (MEF2A) expression were down-regulated in AKT2 knockout (KO) mice, which can be inverted by AMPK activation. We also observed reduced mitochondrial DNA (mtDNA) abundance and reduced expression of genes involved in mitochondrial biogenesis in the skeletal muscle of AKT2 KO mice, which was prevented by AMPK activation. Moreover, AKT2 KO mice exhibited impaired AMPK signaling in response to insulin stimulation compared with WT mice. Our study establishes a new and important function of AKT2 in regulating skeletal muscle development and glucose metabolism via AMPK-dependent signaling.


AMP-Activated Protein Kinases/metabolism , Homeostasis , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Aging/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Cell Line , Gene Regulatory Networks/drug effects , Glucose/metabolism , Homeostasis/drug effects , Loss of Function Mutation , MEF2 Transcription Factors/metabolism , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Muscle, Skeletal/drug effects , Muscle, Skeletal/ultrastructure , Organ Size/drug effects , Organelle Biogenesis , Proto-Oncogene Proteins c-akt/deficiency , Ribonucleotides/pharmacology , Sarcopenia/pathology , Signal Transduction/drug effects
13.
Inorg Chem ; 59(17): 11915-11919, 2020 Sep 08.
Article En | MEDLINE | ID: mdl-32815726

Mechanically interlocked molecules are a class of smart supramolecular species because of their interesting topological structure and application in various areas, such as biology and nanoscience. In this work, we used "multicomponent reaction" to fabricate a new [2]rotaxane based on pillar[5]arene from different small-sized molecules. The molecular structure of the obtained [2]rotaxane R was confirmed by 1H and 13C NMR, high-resolution electrospray ionization mass spectrometry, two-dimensional nuclear Overhauser effect spectroscopy, and density functional theory studies. Interestingly, the [2]rotaxane-based organometallic cross-linked catalyst (Pd@R) was easily constructed via the coordination between triazole groups and Pd(NO3)2. Pd@R proved to be a good catalyst for the Suzuki-Miyaura coupling reaction with excellent stability and repeatability.

14.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1253-1264, 2019 06 01.
Article En | MEDLINE | ID: mdl-30668979

BACKGROUND: NF-E2-related factor 2 (Nrf2) is a transcription factor playing cytoprotective effects in various pathological processes including oxidative stress and cardiac hypertrophy. Despite being a potential therapeutic target to treat several cardiomyopathies, the signaling underlying Nrf2-dependent cardioprotective action remains largely uncharacterized. AIM: This study aimed to explore the signaling mediating the role of Nrf2 in the development of hypertensive cardiac pathogenesis by analyzing the response to Angiotensin II (Ang II) in the presence or absence of Nrf2 expression, both in vivo and in vitro. RESULTS: Our results indicated that Nrf2 deficiency exacerbated cardiac damage triggered by Ang II infusion. Mechanistically, our study shows that Ang II-triggered hypertrophy and inflammation is exacerbated in the absence of Nrf2 expression and points to the involvement of the IL-6/STAT3 signaling pathway in this event. Indeed, our results show that IL-6 abundance triggered by Ang II is increased in the absence of Nrf2 and demonstrate the requirement of IL-6 in STAT3 activation and cardiac inflammation induced by Ang II. CONCLUSION: Our results show that Nrf2 is important for the protection of the heart against Ang II-induced cardiac hypertrophy and inflammation by mechanisms involving the regulation of IL-6/STAT3-dependent signaling.


Cardiomegaly/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , NF-E2-Related Factor 2/metabolism , STAT3 Transcription Factor/metabolism , Angiotensin II , Animals , Animals, Newborn , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cells, Cultured , Inflammation/chemically induced , Inflammation/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/genetics , Rats, Sprague-Dawley , Signal Transduction/genetics
15.
Int J Mol Sci ; 19(9)2018 Aug 21.
Article En | MEDLINE | ID: mdl-30134607

Interleukin-6 (IL-6) is implicated in multiple biological functions including immunity, neural development, and haematopoiesis. Recently, mounting evidence indicates that IL-6 plays a key role in metabolism, especially lipid metabolic homeostasis. A working heart requires a high and constant energy input which is largely generated by fatty acid (FA) ß-oxidation. Under pathological conditions, the precise balance between cardiac FA uptake and metabolism is perturbed so that excessive FA is accumulated, thereby predisposing to myocardial dysfunction (cardiac lipotoxicity). In this review, we summarize the current evidence that suggests the involvement of IL-6 in lipid metabolism. Cardiac metabolic features and consequences of myocardial lipotoxicity are also briefly analyzed. Finally, the roles of IL-6 in cardiac FA uptake (i.e., serum lipid profile and myocardial FA transporters) and FA metabolism (namely, ß-oxidation, mitochondrial function, biogenesis, and FA de novo synthesis) are discussed. Overall, understanding how IL-6 transmits signals to affect lipid metabolism in the heart might allow for development of better clinical therapies for obesity-associated cardiac lipotoxicity.


Cardiomyopathies/metabolism , Fatty Acids/metabolism , Homeostasis/genetics , Interleukin-6/metabolism , Myocardium/metabolism , Obesity/metabolism , Animals , Biological Transport , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Electron Transport , Gene Expression Regulation , Humans , Interleukin-6/genetics , Lipid Metabolism/genetics , Mitochondria/genetics , Mitochondria/metabolism , Myocardium/pathology , Obesity/genetics , Obesity/pathology , Organelle Biogenesis , Oxidation-Reduction
16.
Eur J Pharmacol ; 819: 161-168, 2018 Jan 15.
Article En | MEDLINE | ID: mdl-29191769

Acute liver failure (ALF) is characterized by sudden large area of inflammation and extensive hepatocyte apoptosis. This study identified the natural product berberine as a potential agent for acute liver failure(ALF). First, in vitro, BBR pre-incubation (5, 10 and 20µM) alleviated L02 hepatocytes injury induced by D-GalN (5mM)/TNF-α (100ng/ml). Second, in vivo, BBR pre-treatment attenuated D-Galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver failure, as evidenced by the reduction of mortality, the alleviation of liver pathological changes and the inhibition of alanine aminotransferase (ALT)/aspartate aminotransferase (AST). Our results further illustrated that BBR inhibited the nuclear translocation of NF-κB p65 and subsequently suppressed the expressions of inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at both mRNA and protein levels in ALF. Moreover, western blotting demonstrated that BBR effectively inhibited apoptosis via reducing cytochrome c release, Bax/Bcl-2 ratio and caspase-3/-9 cleavage in vitro and in vivo. In conclusion, our findings suggest that BBR serves as a potential agent for preventing or treating human ALF by inhibiting inflammation and mitochondria-dependent apoptosis.


Apoptosis/drug effects , Berberine/pharmacology , Liver Failure, Acute/pathology , Liver Failure, Acute/prevention & control , Mitochondria/drug effects , Animals , Berberine/therapeutic use , Cytoprotection/drug effects , Galactosamine/pharmacology , Inflammation/drug therapy , Liver Failure, Acute/metabolism , Male , Mice , Mice, Inbred ICR , Mitochondria/metabolism , NF-kappa B/metabolism , RAW 264.7 Cells , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/pharmacology
17.
J Hypertens ; 36(4): 834-846, 2018 04.
Article En | MEDLINE | ID: mdl-29120957

OBJECTIVE: Protein kinase B2 (AKT2) is implicated in cardiomyocyte survival during various stress conditions. However, the role of AKT2 in heart function, cardiac hypertrophy and blood pressure (BP) control during hypertension is not fully understood. Therefore, we sought to determine whether the deletion of AKT2 protects cardiac function during angiotensin II/high-salt-diet (AngII/HSD) treatment and find out the signaling pathway. METHODS: Male C57BL/6J (wild type), AKT2 knockout and interleukin (IL)-6 knockout mice were fed a 4% NaCl diet for 5 weeks. In the last week, mice were split in two groups and infused subcutaneously with either vehicle or AngII (1.5 µg/h per mouse) for 1 week. Then, BP and cardiac function were assessed. Immunohistology of IL-6 and monocyte chemoattractant protein 1 was performed to detect inflammation in the heart. Masson's trichrome staining was performed to evaluate cardiac fibrosis. Heart tissue homogenates and neonatal mice cardiomyocytes were collected to analyze oxidative stress. RESULTS: Compared with wild-type mice, AKT2 knockout mice maintained BP and showed better left ventricle ejection fraction, lower level of fibrosis, reduced oxidative stress, reduced IL-6 expression and less macrophage infiltration, when treated with AngII/HSD. IL-6 knockout mice treated with AngII/HSD also showed alleviated left ventricular function, fibrosis, oxidative stress and macrophage infiltration compared with wild type. CONCLUSION: AKT2 deficiency prevents the development of AngII/HSD-induced hypertension, cardiac dysfunction and myocardial injury including oxidative stress, fibrosis and inflammation by suppressing IL-6 expression. These data reveal an important role of the AKT2-IL-6 pathway in mediating AngII/HSD-induced hypertension and cardiomyopathy.


Blood Pressure/genetics , Hypertension/genetics , Interleukin-6/genetics , Myocardium/pathology , Proto-Oncogene Proteins c-akt/genetics , Angiotensin II/pharmacology , Animals , Cell Movement/genetics , Chemokine CCL2/metabolism , Fibrosis , Gene Expression/genetics , Hypertension/etiology , Hypertension/physiopathology , Inflammation/metabolism , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Oxidative Stress/genetics , Sodium Chloride, Dietary/administration & dosage , Sodium Chloride, Dietary/adverse effects , Stroke Volume/genetics , Vasoconstrictor Agents/pharmacology , Ventricular Function, Left/drug effects
18.
Biochem Biophys Res Commun ; 494(3-4): 534-541, 2017 12 16.
Article En | MEDLINE | ID: mdl-29079193

Interleukin-6 (IL-6) signaling is critical for cardiomyocyte hypertrophy, while the role of IL-6 in the pathogenesis of myocardium hypertrophy remains controversial. To determine the essential role of IL-6 signaling for the cardiac development during AngII-induced hypertension, and to elucidate the mechanisms, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were infused subcutaneously with either vehicle or AngII (1.5 µg/h/mouse) for 1 week. Immunohistological and serum studies revealed that the extents of cardiac fibrosis, inflammation and apoptosis were reduced in IL-6 KO heart during AngII-stimulation, while cardiac hypertrophy was obviously induced. To investigate the underlying mechanisms, by using myocardial tissue and neonatal cardiomyocytes, we observed that IL-6/STAT3 signaling was activated under the stimulation of AngII both in vivo and in vitro. Further investigation suggested that STAT3 activation enhances the inhibitory effect of EndoG on MEF2A and hampers cardiomyocyte hypertrophy. Our study is the first to show the important role of IL-6 in regulating cardiac pathogenesis via inflammation and apoptosis during AngII-induced hypertension. We also provide a novel link between IL-6/STAT3 and EndoG/MEF2A pathway that affects cardiac hypertrophy during AngII stimulation.


Angiotensin II/administration & dosage , Cardiomyopathies/immunology , Cardiomyopathies/pathology , Interleukin-6/immunology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , STAT3 Transcription Factor/immunology , Animals , Cardiomyopathies/chemically induced , Cells, Cultured , Hypertrophy/immunology , Hypertrophy/pathology , Interleukin-6/genetics , Male , Mice , Mice, Knockout , Myocytes, Cardiac/drug effects
19.
Biochem Biophys Res Commun ; 493(4): 1410-1417, 2017 12 02.
Article En | MEDLINE | ID: mdl-28965945

Protein kinase B2 (AKT2) is implicated in diverse process of cardiomyocyte signaling including survival and metabolism. However, the role of AKT2 in myocardium development and the signaling pathway is rarely understood. Therefore, we sought to determine the effect of AKT2 deletion on heart development and its downstream targets. By using experimental animal models and neonatal rat cardiomyocytes (NRCMs), we observed that AKT2 deficiency induces retardation of heart development and increased systemic blood pressure (BP) without affecting cardiac function. Further investigation suggested that deficiency of AKT2 in myocardium results in diminished MEF2A abundance, which induced decreased size of cardiomyocytes. We additionally confirmed that EndoG, which is also regulated by AKT2, is a suppressor of MEF2A in myocardium. Finally, our results proved that AKT2 deficiency impairs the response to ß-adrenergic stimuli that normally causes hypertrophy in cardiomyocytes by downregulating MEF2A expression. Our data are the first to show the important role of AKT2 in determining the size of myocardium, its deficiency causes retardation of cardiomyocyte development. We also proved a novel pathway of heart development involving EndoG and MEF2A regulated by AKT2.


Endodeoxyribonucleases/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/deficiency , Animals , Cell Differentiation , Cell Size , Cells, Cultured , Endodeoxyribonucleases/antagonists & inhibitors , Endodeoxyribonucleases/genetics , Gene Knockdown Techniques , Heart/growth & development , MEF2 Transcription Factors/antagonists & inhibitors , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Mice, Knockout , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , RNA, Small Interfering/genetics , Rats , Signal Transduction
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3128-3141, 2017 12.
Article En | MEDLINE | ID: mdl-28844956

OBJECTIVE: Obesity is associated with metabolic disorder and chronic inflammation that plays a crucial role in cardiovascular diseases. IL-6 is involved in regulating obesity-related lipid metabolism and inflammation. In this study, we sought to determine the role of IL-6 in high-fat diet (HFD)-induced cardiomyopathy and explore the signaling pathway. METHODS: Female, 5-week-old IL-6 knockout (KO) and littermate mice were fed a normal diet (ND, 10% fat) or HFD (45% fat) for 14 weeks. At the end of treatment, cardiac function was assessed by echocardiography. Adipose tissues and plasma were collected for further measurement. Immunohistology of CD68 was performed to detect inflammation in the heart. Masson's trichrome staining and Oil Red O staining was applied to evaluated cardiac fibrosis and lipid accumulation. Real-time PCR and Western immunoblotting analyses on heart tissue were used to explore the underlying mechanism. RESULTS: IL-6 KO mice displayed increased insulin resistance compared to WT mice at baseline. When fed HFD, IL-6 KO mice showed decreased gains in body weight and fat mass, increased insulin resistance relative to IL-6 KO mice feed ND. Furthermore, IL-6 KO mice developed cardiac dysfunction during HFD-induced obesity. Histological analysis suggested increased lipid accumulation, fibrosis and inflammation without affecting cardiac morphology during HFD treatment in the heart of IL-6 KO mice. Finally, IL-6 deficiency increased the phosphorylation of AMPK and ACC in the heart during HFD-induced obesity. CONCLUSION: Our results suggest that IL-6 contributes to limit lipid metabolic disorder, cardiac hypertrophy, fibrosis, inflammation and myocardium lipotoxicity during HFD-induced obesity.


Interleukin-6/deficiency , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cardiomegaly/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Diet, High-Fat , Fatty Acids/metabolism , Female , Fibrosis/metabolism , Fibrosis/physiopathology , Gene Knockout Techniques , Heart/physiopathology , Inflammation/metabolism , Inflammation/pathology , Insulin Resistance , Interleukin-6/genetics , Interleukin-6/metabolism , Lipid Metabolism , Mice , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Obesity/physiopathology , Phosphorylation
...