Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 58(30): 4747-4750, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35332351

RESUMEN

The standard potential of a lithium metal electrode versus the standard hydrogen electrode was calculated by constructing the thermodynamic cycle in a hypothetical electrochemical cell with a dual-phase electrolyte. It is demonstrated that the standard potential of the lithium metal electrode can fluctuate over 0.5 V in different organic solvents, and is correlated to the modified donor number by the entropy of fusion of the solvents.

2.
ACS Appl Mater Interfaces ; 13(47): 56233-56241, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787405

RESUMEN

The merits of Ni-rich layered oxide cathodes in specific capacity and material cost accelerate their practical applications in electric vehicles and grid energy storage. However, detrimental structural deterioration occurs inevitably during long-term cycling, leading to potential instability and capacity decay of the cathodes. In this work, we investigate the effect of the doped cation radius on the electrochemical performance and structural stability of Ni-rich cathode materials by doping with Mg and Ca ions in LiNi0.8Co0.1Mn0.1O2. The results reveal that an increase in the doping ion radius can enlarge the interlayer spacing but lead to the collapse of the layered structure if the ion radius is too large, which undermines the cycling stability of the cathode material. Compared with the Ca-doped sample and the pristine material, Mg-doped LiNi0.8Co0.1Mn0.1O2 presents improved structural stability and superior thermal stability due to the pillar and glue roles of medium-sized Mg ions in the lithium layer. The results of this study suggest that a suitable ionic radius of the dopant is critical for stabilizing the structure and improving the electrochemical properties of Ni-rich layered oxide cathode materials.

3.
Dalton Trans ; 47(20): 6934-6941, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29713709

RESUMEN

Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA