Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2402641, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011737

RESUMEN

The tracking of nanomedicines in their concentration and location inside living systems has a pivotal effect on the understanding of the biological processes, early-stage diagnosis, and therapeutic monitoring of diseases. Nanoscale metal-organic frameworks (nano MOFs) possess high surface areas, definite structure, regulated optical properties, rich functionalized sites, and good biocompatibility that allow them to excel in a wide range of biomedical applications. Controllable syntheses and functionalization endow nano MOFs with better properties as imaging agents and sensing units for the diagnosis and treatment of diseases. This minireview summarizes the tunable synthesis strategies of nano MOFs with controllable size, shape, and regulated luminescent performance, and pinpoints their recent advanced applications as optical elements in bioimaging and biosensing. The current limitations and future development directions of nano MOF-contained materials in bioimaging and biosensing applications are also discussed, aiming to expand the biological applications of nano MOF-based nanomedicine and facilitate their production or clinical translation.

2.
Angew Chem Int Ed Engl ; 63(12): e202400195, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38298061

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) have shown promise in various fields; however, the construction of HOF/polymer hybrid membranes that can maintain both structural and functional integrity remains challenging. In this study, we here fabricated a new HOF (HOF-50) with reserved polymerizable allyl group via charge-assisted H-bonds between the carboxylate anion and amidinium, and subsequently copolymerized the HOF with monomers to construct a covalently bonded HOF/polymer hybrid (polyHOF) membrane. The resulting polyHOF membrane not only exhibits customizable mechanical properties and extreme stability, but also shows an exceptional ratiometric luminescent temperature-sensing function with very high sensitivity and visibility even when the lanthanide content is two orders of magnitude lower than that of the reported mixed-lanthanide metal-organic frameworks (MOFs) and lanthanide-doped covalent organic frameworks (COFs). This orthogonal postsynthesis copolymerization strategy may provide a general approach for preparing covalently connected HOF/polymer hybrid membranes for diverse applications.

3.
Sci Bull (Beijing) ; 68(12): 1223-1224, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37263890
4.
J Basic Microbiol ; 63(8): 897-908, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37058007

RESUMEN

The antiglycemic drug metformin, which is widely prescribed as a first-line drug for the treatment of type 2 diabetes, has become a concern for emerging pollutants in natural ecosystems. However, its effects on bacterial swimming motility remain unclear. In this study, we showed that metformin promotes bacterial surface aggregation by tracking swimming and by measuring the density distribution of Escherichia coli cultured with metformin near a surface in a homogeneous environment. Flagella are essential for the promotion of bacterial surface aggregation by metformin. Swimming motility, which is mediated by flagella, determines bacterial surface aggregation. The promotion of bacterial surface aggregation by metformin is caused by a reduction in swimming motility, which is governed by a decrease in the proton motive force. Our results reveal that metformin has a pronounced effect on flagellated bacterial motility associated with surface sensing and aggregation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Escherichia coli , Natación , Metformina/farmacología , Ecosistema , Bacterias , Flagelos
5.
Angew Chem Int Ed Engl ; 62(21): e202302564, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36940231

RESUMEN

Developing adsorptive separation processes based on C2 H6 -selective sorbents to replace energy-intensive cryogenic distillation is a promising alternative for C2 H4 purification from C2 H4 /C2 H6 mixtures, which however remains challenging. During our studies on two isostructural metal-organic frameworks (Ni-MOF 1 and Ni-MOF 2), we found that Ni-MOF 2 exhibited significantly higher performance for C2 H6 /C2 H4 separation than Ni-MOF-1, as clearly established by gas sorption isotherms and breakthrough experiments. Density-Functional Theory (DFT) studies showed that the unblocked unique aromatic pore surfaces within Ni-MOF 2 induce more and stronger C-H⋅⋅⋅π with C2 H6 over C2 H4 while the suitable pore spaces enforce its high C2 H6 uptake capacity, featuring Ni-MOF 2 as one of the best porous materials for this very important gas separation. It generates 12 L kg-1 of polymer-grade C2 H4 product from equimolar C2 H6 /C2 H4 mixtures at ambient conditions.

6.
Acc Chem Res ; 55(24): 3752-3766, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36454588

RESUMEN

Hydrogen-bonded organic framework (HOF) materials have provided a new dimension and bright promise as a new platform for developing multifunctional materials. They can be readily self-assembled from their corresponding organic molecules with diverse functional sites such as carboxylic acid and amine groups for their hydrogen bonding and aromatic ones for their weak π···π interactions to stabilize the frameworks. Compared with those established porous materials such as zeolites, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs), it is much more difficult to stabilize HOFs and thus establish their permanent porosities given the fact that hydrogen bonds are typically weaker than ionic, coordination, and covalent bonds. But it provides the uniqueness of HOF materials in which they can be easily recovered and regenerated through simple recrystallization. HOF materials can also be easily and straightforwardly processed and very compatible with the biomolecules, making them potentially very useful materials for industrial and biomedical applications. The reversible and weak bonding nature of the hydrogen bonds can be readily utilized to construct flexible porous HOF materials in which we can tune the temperature and pressure to control their porosities and, thus, their diverse applications, for example, on gas separations, gas storage, drug delivery, and sensing. Some specific organic functional groups are quite directional for the hydrogen bond formations; for example, carboxylic acid prefers to form a directional dimer, which has enabled us to readily construct reticular porous HOF materials whose pores can be systematically tuned. In this Account, we outline our journey of exploring this new type of porous material by establishing one of the first porous HOFs in 2011 and thus developing its diverse applications. We have been able to use organic molecules with different functional sites, including 2,4-diaminotriazine (DAT), carboxylic acid (COOH), aldehyde (CHO), and cyano (CN), to construct porous HOFs. Through tuning the pore sizes, introducing specific binding sites, and making use of the framework flexibility, we have realized a series of HOF materials for the gas separations of C2H2/C2H4, C2H4/C2H6, C3H6/C3H8, C2H2/CO2, CO2/N2, and Xe/Kr and enantioselective separation of alcohols. To make use of optically active organic molecules, we have developed HOF materials for their luminescent sensing and optical lasing. Our research endeavors on multifunctional HOF materials have initiated extensive research in this emerging research topic among chemistry and materials sciences communities. We foresee that not only many more HOF materials will be developed but novel functions will be fulfilled beyond our imaginations soon.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Enlace de Hidrógeno , Aldehídos , Ácidos Carboxílicos , Hidrógeno
7.
Angew Chem Int Ed Engl ; 61(51): e202213959, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259375

RESUMEN

Rational design of hydrogen-bonded organic frameworks (HOFs) with multiple functionalities is highly sought after but challenging. Herein, we report a multifunctional HOF (HOF-FJU-2) built from 4,4',4'',4'''-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzaldehyde molecule with tetrabenzaldeyde for their H bonding interactions and carbazole N-H site for its specific recognition of small molecules. The Lewis acid N-H sites allow HOF-FJU-2 facilely separate acetone from its mixture with another solvent like methanol with smaller pKa value. The donor (D)-π-acceptor (A) aromatic nature of the organic building molecule endows this HOF with solvent dependent luminescent/chromic properties, so the column acetone/methanol separation on HOF-FJU-2 can be readily visualized.


Asunto(s)
Acetona , Metanol , Sitios de Unión , Solventes , Hidrógeno
8.
ACS Appl Mater Interfaces ; 14(17): 19623-19628, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35465666

RESUMEN

Separation of xenon/krypton gas mixtures is one of the valuable but challenging processes in the gas industries due to their close molecular size and similar physical properties. Here, we report a novel ultramicroporous hydrogen-bonded organic framework (termed as HOF-40) constructed from a cyano-based organic building unit of 1,2,4,5-tetrakis(4-cyanophenyl)benzene (TCPB), exhibiting superior separation performance for Xe/Kr mixtures, as clearly demonstrated by dynamic breakthrough curves. GCMC simulation results indicate that the pore confinement effect and abundant accessible binding sites play a synergistic role in this challenging gas separation. Furthermore, this cyano-based HOF displays excellent chemical stability from 12 M HCl to 20 M NaOH aqueous solutions.

9.
J Am Chem Soc ; 144(4): 1681-1689, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-34965123

RESUMEN

The removal of carbon dioxide (CO2) from acetylene (C2H2) is a critical industrial process for manufacturing high-purity C2H2. However, it remains challenging to address the tradeoff between adsorption capacity and selectivity, on account of their similar physical properties and molecular sizes. To overcome this difficulty, here we report a novel strategy involving the regulation of a hydrogen-bonding nanotrap on the pore surface to promote the separation of C2H2/CO2 mixtures in three isostructural metal-organic frameworks (MOFs, named MIL-160, CAU-10H, and CAU-23, respectively). Among them, MIL-160, which has abundant hydrogen-bonding acceptors as nanotraps, can selectively capture acetylene molecules and demonstrates an ultrahigh C2H2 storage capacity (191 cm3 g-1, or 213 cm3 cm-3) but much less CO2 uptake (90 cm3 g-1) under ambient conditions. The C2H2 adsorption amount of MIL-160 is remarkably higher than those for the other two isostructural MOFs (86 and 119 cm3 g-1 for CAU-10H and CAU-23, respectively) under the same conditions. More importantly, both simulation and experimental breakthrough results show that MIL-160 sets a new benchmark for equimolar C2H2/CO2 separation in terms of the separation potential (Δqbreak = 5.02 mol/kg) and C2H2 productivity (6.8 mol/kg). In addition, in situ FT-IR experiments and computational modeling further reveal that the unique host-guest multiple hydrogen-bonding interaction between the nanotrap and C2H2 is the key factor for achieving the extraordinary acetylene storage capacity and superior C2H2/CO2 selectivity. This work provides a novel and powerful approach to address the tradeoff of this extremely challenging gas separation.

10.
Adv Mater ; 33(45): e2105880, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34535931

RESUMEN

Separating carbon dioxide from fuel gases like hydrocarbons by physical adsorbents is industrially important and more energy-efficient than traditional liquid extraction or cryogenic distillation methods. It is very important while very challenging to develop CO2 -selective adsorbents, considering CO2 is less polarizable than light hydrocarbon molecules, particularly those simultaneously with almost identical molecular dimensions and physical properties, such as acetylene. Herein, an ultramicroporous metal-organic framework constructed from copper(II) and 5-fluoropyrimidin-2-olate, termed Cu-F-pymo, is carefully studied under different activations for inverse separation of CO2 from C2 H2 . The partially desolvated Cu-F-pymo can exclusively capture CO2 over C2 H2 with very high selectivity exceeding 105 under ambient conditions, the highest ever reported. Sorption experiments and modeling studies reveal that such molecular sieving effect is attributed to the suppression of C2 H2 adsorption from the blockage of the preferential sites for C2 H2 by residual water molecules. The inverse separation is further confirmed by column breakthrough studies given that highly pure acetylene (>99.9%) can be directly harvested from the gas mixture. Cu-F-pymo also shows remarkable stability under harsh conditions.

11.
Angew Chem Int Ed Engl ; 60(44): 23705-23712, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34428857

RESUMEN

Guided by a second-sphere interaction strategy, we fabricated a Tb(III)-based metal-organic framework (MMCF-4) for turn-on sensing of methyl amine with ultra-low detection limit and high turn-on efficiency. MMCF-4 features lanthanide nodes shielded in a nonacoordinate geometry along with secondary coordination spheres that are densely populated with H-bond interacting sites. Nonradiative routes were inhibited by binding-induced rigidification of the ligand on the second coordination sphere, resulting in luminescence amplification. Such remote interacting mechanism involved in the turn-on sensing event was confirmed by single-crystal X-ray diffraction and molecular dynamic simulation studies. The design of both primary and secondary coordination spheres of Tb(III) enabled the first turn-on sensing of organic amines in aqueous conditions. Our work suggests a promising strategy for high-performance turn-on sensing for Ln-MOFs and luminous materials driven by other metal chromophores.

12.
Nat Chem ; 13(10): 933-939, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34239085

RESUMEN

Porous materials are very promising for the development of cost- and energy-efficient separation processes, such as for the purification of ethylene from ethylene/ethane mixture-an important but currently challenging industrial process. Here we report a microporous hydrogen-bonded organic framework that takes up ethylene with very good selectivity over ethane through a gating mechanism. The material consists of tetracyano-bicarbazole building blocks held together through intermolecular CN···H-C hydrogen bonding interactions, and forms as a threefold-interpenetrated framework with pores of suitable size for the selective capture of ethylene. The hydrogen-bonded organic framework exhibits a gating mechanism in which the threshold pressure required for guest uptake varies with the temperature. Ethylene/ethane separation is validated by breakthrough experiments with high purity of ethylene (99.1%) at 333 K. Hydrogen-bonded organic frameworks are usually not robust, yet this material was stable under harsh conditions, including exposure to strong acidity, basicity and a variety of highly polar solvents.

13.
Adv Mater ; 33(15): e2008020, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33690942

RESUMEN

Due to increasing food-safety issues, exploiting efficient approaches for food quality assessment and instrumentation has attracted concerns worldwide. Herein, a smart evaluation system based on a fluorescent metal-organic framework (MOF) is developed for real-time visual monitoring of food freshness. Via post-synthetic modification, a ratiometric fluorescent MOF probe is constructed by covalently coupling fluorescein 5-isothiocyanate (5-FITC) with NH2 -rich lanthanide MOF. The probes exhibit a dual-emissive-responsive to biogenic amine, resulting in an increase in FITC emission along with a decrease in Eu3+ emission accompanied by a clear distinguishable color transition from orange red to green. After doping the probes on a flexible substrate, the obtained MOF composite film can be integrated with a smartphone-based portable platform easily. It is proved that this smart evaluation system can be used for on-site inspection of the freshness of raw fish samples. This work develops a fluorescent MOF-based smart evaluation system as a novel platform for application in food monitoring, which not only has enormous economic value but also holds great public health significance.


Asunto(s)
Europio/química , Fluoresceína-5-Isotiocianato/química , Colorantes Fluorescentes/química , Estructuras Metalorgánicas/química , Animales , Técnicas Biosensibles , Peces , Calidad de los Alimentos , Humanos , Teléfono Inteligente , Espectrometría de Fluorescencia
14.
Front Microbiol ; 12: 792406, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087494

RESUMEN

Metformin is a biguanide molecule that is widely prescribed to treat type 2 diabetes and metabolic syndrome. Although it is known that metformin promotes the lifespan by altering intestinal microorganism metabolism, how metformin influences and alters the physiological behavior of microorganisms remains unclear. Here we studied the effect of metformin on the behavior alterations of the model organism Escherichia coli (E. coli), including changes in chemotaxis and flagellar motility that plays an important role in bacterial life. It was found that metformin was sensed as a repellent to E. coli by tsr chemoreceptors. Moreover, we investigated the chemotactic response of E. coli cultured with metformin to two typical attractants, glucose and α-methyl-DL-aspartate (MeAsp), finding that metformin prolonged the chemotactic recovery time to the attractants, followed by the recovery time increasing with the concentration of stimulus. Metformin also inhibited the flagellar motility of E. coli including the flagellar motor rotation and cell swimming. The inhibition was due to the reduction of torque generated by the flagellar motor. Our discovery that metformin alters the behavior of chemotaxis and flagellar motility of E. coli could provide potential implications for the effect of metformin on other microorganisms.

15.
Inorg Chem ; 59(23): 17143-17148, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33166119

RESUMEN

The isoreticular principle has been applied to construct two copper metal-organic framework (MOF) analogues with different porosities for the adsorptive capture of CO2 from N2 and CH4 at 1 atm and 298 K. By using a 4-substituted isophthalate linker with a bulky nitro group, the microporous MOF [Cu(BDC-NO2)(DMF)] (UTSA-93 or CuBDC-NO2; H2BDC-NO2 = 4-nitroisophthalic acid and DMF = N,N'-dimethylformamide) has been synthesized with mot topology, showing a compact pore structure with a size of 6.0 × 7.0 Å2 in contrast to that of 6.9 × 8.5 Å2 in the prototypical MOF with a bromo group. The optimized pore structure allows the nitro-functionalized MOF to capture CO2 with a higher capacity of about 2.40 mmol g-1 under ambient conditions, in contrast to 1.08 mmol g-1 in the bromo-functionalized analogue. The adsorption selectivity of CuBDC-NO2-a for a CO2/N2 (15:85) mixture (28) under ambient conditions is also higher than that of the bromo-substituted prototype (25) and comparable with those of several MOF materials. Moreover, dynamic breakthrough experiments of the nitro-functionalized MOF have been performed to illustrate its separation potential toward a CO2/N2 mixture.

16.
Angew Chem Int Ed Engl ; 59(48): 21752-21757, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32783289

RESUMEN

Temperature sensors play a significant role in biology, chemistry, and engineering, especially those that can work accurately in a noninvasive manner. We adopted a photoinduced post-synthetic copolymerization strategy to realize a membranous ratiometric luminescent thermometer based on the emissions of two lanthanide ions. This novel mixed-lanthanide polyMOF membrane exhibits not only the integrity and temperature sensing behaviour of the Ln-MOF powder but also excellent mechanical properties, such as flexibility, elasticity, and processability. Moreover, the polyMOF membrane shows remarkable stability under harsh conditions, including high humidity, strong acid and alkali (pH 0-14), which allowed the mapping of temperature distributions in extreme circumstances. This work highlights a simple strategy for polyMOF membrane formation and pushes forward the further practical application of Ln-MOF-based luminescent thermometers in various fields and conditions.

17.
J Am Chem Soc ; 142(20): 9258-9266, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32336085

RESUMEN

Introducing multiclusters and multiligands (mm) in a well-defined array will greatly increase the diversity of metal-organic frameworks (MOFs). Here, a series of porous mm-MOFs constructed from a pillared-layer and pore-space partition (PL-PSP) have been achieved. FJU-6 with {Co3}-cluster-based sheets and {Co6}-cluster-based pillars exhibits new (3,9,12)-connected llz topology. By using the substituted analogues of the ligands and metal ions, seven isoreticular mm-MOFs (FJU-6-X, X = PTB, TATB, Me-INA, F-INA, NDC, BrBDC, Ni) have been synthesized with the adjustable BET surface areas ranging from 731 to 1306 m2/g as well as the adsorption capacity of CO2 increasing by 77%. The C2H2/CO2 mixture can be effectively separated in the breakthrough experiments in the fixed bed filled with solid FJU-6-TATB at ambient temperature. In all, integrating pillared-layer strategy and pore-space partitioning is effective at constructing mm-MOFs with multivariate environments for the optimization of gas adsorption and separation.

18.
Adv Mater ; 32(21): e1907090, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32243018

RESUMEN

Metal-organic frameworks (MOFs) are an intriguing type of crystalline porous materials that can be readily built from metal ions or clusters and organic linkers. Recently, MOF materials, featuring high surface areas, rich structural tunability, and functional pore surfaces, which can accommodate a variety of guest molecules as proton carriers and to systemically regulate the proton concentration and mobility within the available space, have attracted tremendous attention for their roles as solid electrolytes in fuel cells. Recent advances in MOFs as a versatile platform for proton conduction in the field of humidity condition proton-conduction, anhydrous atmosphere proton-conduction, single-crystal proton-conduction, and including MOF-based membranes for fuel cells, are summarized and highlighted. Furthermore, the challenges, future trends, and prospects of MOF materials for solid electrolytes are also discussed.

19.
ACS Appl Mater Interfaces ; 12(14): 16367-16375, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32208675

RESUMEN

Here we synthesized two new isostructural MOFs (FJU-82-Co/FJU-82-Zn) and first observed that tuning of the proton conductivity may provide an effective strategy to improve the electrocatalytic OER perfomances of isostructural crystalline MOF materials. The conductivity value for FJU-82-Co is 7.40 × 10-5 S cm-1, which is 127-fold that for FJU-82-Zn with 5.80 × 10-7 S cm-1 at 60 °C and 98% RH, while the overpotential of FJU-82-Co is 0.57 V at 1 mA cm-2, which is better than that of FJU-82-Zn with 1.17 V.

20.
Inorg Chem ; 59(6): 3518-3522, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32091878

RESUMEN

Although proton-conductive metal phosphonates with well-defined structure offer a favorable platform for exploring their structure-property relationship, investigating of the synergic effect of phosphonate groups and functional moieties on proton conduction is rare. In this work, we have synthesized two new copper phosphonates, [Cu(4-cppH)(4,4'-bipy)(H2O)3] (FJU-80) and [Cu(4-cppH)(4,4'-bipy)]·H2O·DMF (FJU-81), by the method of solvent-assisted modification, giving a 1D metal coordination polymer and a 3D metal open framework, respectively. Single-crystal X-ray diffraction shows that FJU-80 is full of hydrogen-bonding sites contributed from the improved synergic effect of phosphonate groups, carboxylate groups, and coordinated water molecules, thereby facilitating continuous hydrogen-bonding networks, whereas FJU-81 only has discrete hydrogen-bonding fragments. Powder X-ray diffraction and impedance analyses confirm that FJU-80 possesses higher water stability as well as improved proton conductivity, indicating that solvent-assisted modification is effective in increasing the hydrogen-bonding sites from phosphonate groups and functional moieties and then realizing facile proton transfer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA