Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Front Microbiol ; 14: 1193714, 2023.
Article En | MEDLINE | ID: mdl-37275129

Fusarium oxysporum f. sp. cubense (Foc) is a devastating plant pathogen that caused a great financial loss in the banana's source area. Metatranscriptomic analysis was used to determine the diversity of mycoviruses in 246 isolates of F. oxysporum f. sp. cubense. Partial or nearly complete genomes of 20 mycoviruses were obtained by BLASTp analysis of RNA sequences using the NCBI database. These 20 viruses were grouped into five distinct lineages, namely Botourmiaviridae, Endornaviridae, Mitoviridae, Mymonaviridae, Partitiviridae, and two non-classified mycoviruses lineages. To date, there is no report of the presence of mycoviruses in this pathogen. In this study, we demonstrate the presence of mycoviruses isolated from Foc. These findings enhance our overall knowledge of viral diversity and taxonomy in Foc. Further characterization of these mycoviruses is warranted, especially in terms of exploring these novel mycoviruses for innovative biocontrol of banana Fusarium wilt disease.

2.
Sci Adv ; 8(46): eabq7352, 2022 Nov 18.
Article En | MEDLINE | ID: mdl-36383657

Photosynthesis is the energetic basis for most life on Earth, and in plants it operates inside double membrane-bound organelles called chloroplasts. The photosynthetic apparatus comprises numerous proteins encoded by the nuclear and organellar genomes. Maintenance of this apparatus requires the action of internal chloroplast proteases, but a role for the nucleocytosolic ubiquitin-proteasome system (UPS) was not expected, owing to the barrier presented by the double-membrane envelope. Here, we show that photosynthesis proteins (including those encoded internally by chloroplast genes) are ubiquitinated and processed via the CHLORAD pathway: They are degraded by the 26S proteasome following CDC48-dependent retrotranslocation to the cytosol. This demonstrates that the reach of the UPS extends to the interior of endosymbiotically derived chloroplasts, where it acts to regulate photosynthesis, arguably the most fundamental process of life.

3.
J Sci Food Agric ; 102(14): 6404-6413, 2022 Nov.
Article En | MEDLINE | ID: mdl-35562847

BACKGROUND: Fish protein is a good source of amino acids and peptides with sensory properties. Theoretically, the type of protein affects the taste quality of the protein hydrolysates. To better use fish protein in the food ingredients industry, an in silico approach was adopted to evaluate the potential of fish protein to release taste-active compounds. RESULTS: Six types of protein from seven commercial fishes were screened from the Uniprot knowledge base. The results showed that a remarkable number of umami fragments presented in myosin and parvalbumin (PB), such as glutamic acid (Glu), aspartic acid (Asp), and Asp- and Glu- containing peptides, whereas sweet amino acids and bitter peptides (e.g., Pro- and Gly- containing peptides) were mainly found in collagen (CGI) in all fish samples. After the in silico proteolysis by papain, a difference in the profile of taste-active fragments was observed among the six types of proteins. Amino acids were the main hydrolysis products of these proteins, especially umami, sweet, and bitter amino acids, significantly contributing to the taste formation of protein hydrolysates. Besides, the myosin and CGI hydrolysates were abundant in taste active peptides both in types and quantities. CONCLUSION: Myosin is a promising protein source for producing umami fragments, and CGI seems to be a good precursor of sweet and bitter fragments. Different types of protein have an essential effect on the taste of protein hydrolysates. © 2022 Society of Chemical Industry.


Food Ingredients , Taste , Amino Acids , Animals , Aspartic Acid/pharmacology , Fish Proteins/pharmacology , Glutamic Acid , Papain , Parvalbumins , Peptides/pharmacology , Protein Hydrolysates/chemistry
4.
Elife ; 102021 09 02.
Article En | MEDLINE | ID: mdl-34473053

The chloroplast proteome contains thousands of different proteins that are encoded by the nuclear genome. These proteins are imported into the chloroplast via the action of the TOC translocase and associated downstream systems. Our recent work has revealed that the stability of the TOC complex is dynamically regulated by the ubiquitin-dependent chloroplast-associated protein degradation pathway. Here, we demonstrate that the TOC complex is also regulated by the small ubiquitin-like modifier (SUMO) system. Arabidopsis mutants representing almost the entire SUMO conjugation pathway can partially suppress the phenotype of ppi1, a pale-yellow mutant lacking the Toc33 protein. This suppression is linked to increased abundance of TOC proteins and improvements in chloroplast development. Moreover, data from molecular and biochemical experiments support a model in which the SUMO system directly regulates TOC protein stability. Thus, we have identified a regulatory link between the SUMO system and the chloroplast protein import machinery.


All green plants grow by converting light energy into chemical energy. They do this using a process called photosynthesis, which happens inside compartments in plant cells called chloroplasts. Chloroplasts use thousands of different proteins to make chemical energy. Some of these proteins allow the chloroplasts to absorb light energy using chlorophyll, the pigment that makes leaves green. The vast majority of these proteins are transported into the chloroplasts through a protein machine called the TOC complex. When plants lack parts of the TOC complex, their chloroplasts develop abnormally, and their leaves turn yellow. Photosynthesis can make toxic by-products, so cells need a way to turn it off when they are under stress; for example, by lowering the number of TOC complexes on the chloroplasts. This is achieved by tagging TOC complexes with a molecule called ubiquitin, which will lead to their removal from chloroplasts, slowing photosynthesis down. It is unknown whether another, similar, molecular tag called SUMO aids in this destruction process. To find out, Watson et al. examined a mutant of the plant Arabidopsis thaliana. This mutant had low levels of the TOC complex, turning its leaves pale yellow. A combination of genetic, molecular, and biochemical experiments showed that SUMO molecular tags control the levels of TOC complex on chloroplasts. Increasing the amount of SUMO in the mutant plants made their leaves turn yellower, while interfering with the genes responsible for depositing SUMO tags turned the leaves green. This implies that in plants with less SUMO tags, cells stopped destroying their TOC complexes, allowing the chloroplasts to develop better, and changing the colour of the leaves. The SUMO tagging of TOC complexes shares a lot of genetic similarities with the ubiquitin tag system. It is possible that SUMO tags may help to control the CHLORAD pathway, which destroys TOC complexes marked with ubiquitin. Understanding this relationship, and how to influence it, could help to improve the performance of crops. The next step is to understand exactly how SUMO tags promote the destruction of the TOC complex.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplast Proteins/metabolism , SUMO-1 Protein/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplast Proteins/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Transport , SUMO-1 Protein/genetics
5.
BMC Genet ; 21(1): 122, 2020 11 11.
Article En | MEDLINE | ID: mdl-33176672

BACKGROUND: Banana Fusarium wilt is a devastating disease of bananas caused by Fusarium oxysporum f. sp. cubense (Foc) and is a serious threat to the global banana industry. Knowledge of the pathogenic molecular mechanism and interaction between the host and Foc is limited. RESULTS: In this study, we confirmed the changes of gene expression and pathways in the Cavendish banana variety 'Brazilian' during early infection with Foc1 and Foc4 by comparative transcriptomics analysis. 1862 and 226 differentially expressed genes (DEGs) were identified in 'Brazilian' roots at 48 h after inoculation with Foc1 and Foc4, respectively. After Foc1 infection, lignin and flavonoid synthesis pathways were enriched. Glucosinolates, alkaloid-like compounds and terpenoids were accumulated. Numerous hormonal- and receptor-like kinase (RLK) related genes were differentially expressed. However, after Foc4 infection, the changes in these pathways and gene expression were almost unaffected or weakly affected. Furthermore, the DEGs involved in biological stress-related pathways also significantly differed after infection within two Foc races. The DEGs participating in phenylpropanoid metabolism and cell wall modification were also differentially expressed. By measuring the expression patterns of genes associated with disease defense, we found that five genes that can cause hypersensitive cell death were up-regulated after Foc1 infection. Therefore, the immune responses of the plant may occur at this stage of infection. CONCLUSION: Results of this study contribute to the elucidation of the interaction between banana plants and Foc and to the development of measures to prevent banana Fusarium wilt.


Disease Resistance/genetics , Fusarium/pathogenicity , Musa/genetics , Plant Diseases/microbiology , Transcriptome , Fusarium/classification , Gene Expression Regulation, Plant , Lignin/analysis , Plant Roots , Secondary Metabolism
6.
J Hazard Mater ; 368: 760-770, 2019 04 15.
Article En | MEDLINE | ID: mdl-30739029

Two dimensional (2D) titanium carbide (Ti-C) is an analogues of graphene have tremendous attention in recent years due to their high electrical conductivity and catalytic activity. Herein, we have synthesized Ti-C micro particles based on the template-assisted method and subsequently integrated with oxidized carbon nanofiber (f-CNF) through ultrasonication technique. The prepared Ti-C/f-CNF composite was subjected to various structural and morphological characterization techniques including the X-ray diffraction (XRD), scanning electron microscope (SEM), Energy Dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The all followed studies confirmed the formation and crystalline nature of prepared Ti-C/f-CNF nanocomposite. Further, the proposed Ti-C/f-CNF composite modified electrode was successfully applied as an electrocatalyst for the electrochemical detection of diphenylamine (DPA) in food. DPA is known as an anti-scald agent used to post harvest treatment of fruits. However, the higher concentration of DPA causes some hazardous side effects to human. Thus, the detection of DPA is an important concern in healthcare research. Eventually, the proposed Ti-C/f-CNF/SPCE exhibited ultra-low detection limit of (0.003 µM) with a linear range of 0.04-56.82 µM towards the detection of DPA. Moreover, the practicability of the proposed sensor was tested by real sample analysis by using fresh apple extract. Remarkably, the proposed sensor showed an excellent recovery range from 106.8% to 108% for the detection of DPA in spiked apple extract. Finally, we concluded that the integration of f-CNF with Ti-C is significantly enhanced both electrical conductivity and electrocatalytic activity for sensor application.


Diphenylamine/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Titanium/chemistry , Carbon/chemistry , Catalysis , Electrochemical Techniques , Electrodes , Oxidation-Reduction , Surface Properties
...