Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 14(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36364956

RESUMEN

The bone mass increases that occur during the period of childhood are of great significance for maximizing the peak bone mass in adults and preventing for osteoporosis. Studies have reported that VA can improve the bone health in adults. Moreover, limited studies have assessed such associations in children. In this cross-sectional study including 426 children, we assessed the children's plasma retinol concentration by liquid chromatography-mass spectrometry and the dietary intake of VA and carotenoids using a structured Food Frequency Questionnaire. Their bone mineral content and bone mineral density (BMD) were measured using dual-energy X-ray absorptiometry. After adjusting for potential confounders, the restricted cubic spline revealed an inverted U-shaped association between plasma retinol concentration and BMD; the estimated effects on the TBLH BMD per µmol/L increase in the plasma retinol concentration were 1.79 × 10-2 g/cm2 below 1.24 µmol/L and -5.78 × 10-3 g/cm2 above this point (p for non-linearity = 0.046). A multiple linear regression analysis revealed a positive association between the plasma retinol concentration and the TBLH BMC (ß = 1.89, 95% CI: 1.64 × 10-1-3.62, p = 0.032). In conclusion, an appropriate plasma retinol concentration and greater intakes of dietary VA and ß-carotene may enhance the bone mineral status of children who are aged 6-9 years.


Asunto(s)
Densidad Ósea , Vitamina A , Adulto , Niño , Humanos , Estado Nutricional , Estudios Transversales , Absorciometría de Fotón/métodos
2.
Front Pharmacol ; 12: 714566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566640

RESUMEN

Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). It is urgent to develop new drugs that can effectively inhibit the abnormal activation of RA-FLS. In our study, the RA-FLS cell line, MH7A, and mice with collagen-induced arthritis (CIA) were used to evaluate the effect of paclitaxel (PTX). Based on the results, PTX inhibited the migration of RA-FLS in a dose-dependent manner and significantly reduced the spontaneous expression of IL-6, IL-8, and RANKL mRNA and TNF-α-induced transcription of the IL-1 ß, IL-8, MMP-8, and MMP-9 genes. However, PTX had no significant effect on apoptosis in RA-FLS. Mechanistic studies revealed that PTX significantly inhibited the TNF-α-induced phosphorylation of ERK1/2 and JNK in the mitogen-activated protein kinase (MAPK) pathway and suppressed the TNF-α-induced activation of AKT, p70S6K, 4EBP1, and HIF-1α in the AKT/mTOR pathway. Moreover, PTX alleviated synovitis and bone destruction in CIA mice. In conclusion, PTX inhibits the migration and inflammatory mediator production of RA-FLS by targeting the MAPK and AKT/mTOR signaling pathways, which provides an experimental basis for the potential application in the treatment of RA.

3.
Front Mol Neurosci ; 13: 574041, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551740

RESUMEN

Protecting white matter is one of the key treatment strategies for spinal cord injury (SCI), including alleviation of myelin loss and promotion of remyelination. Rapamycin has been shown neuroprotective effects against SCI and cardiotoxic effects while enhancing autophagy. However, specific neuroprotection of rapamycin for the white matter after cervical SCI has not been reported. Therefore, we aim to evaluate the role of rapamycin in neuroprotection after hemi-contusion SCI in mice. Forty-six 8-week-old mice were randomly assigned into the rapamycin group (n = 16), vehicle group (n = 16), and sham group (n = 10). All mice of the rapamycin and vehicle groups received a unilateral contusion with 1.2-mm displacement at C5 followed by daily intraperitoneal injection of rapamycin or dimethyl sulfoxide solution (1.5 mg⋅kg-1⋅day-1). The behavioral assessment was conducted before the injury, 3 days and every 2 weeks post-injury (WPI). The autophagy-related proteins, the area of spared white matter, the number of oligodendrocytes (OLs) and axons were evaluated at 12 WPI, as well as the glial scar and the myelin sheaths formed by Schwann cells at the epicenter. The 1.2 mm contusion led to a consistent moderate-severe SCI in terms of motor function and tissue damage. Rapamycin administration promoted autophagy in spinal cord tissue after injury and reduced the glial scar at the epicenter. Additionally, rapamycin increased the number of OLs and improved motor function significantly than in the vehicle group. Furthermore, the rapamycin injection resulted in an increase of Schwann cell-mediated remyelination and weight loss. Our results suggest that rapamycin can enhance autophagy, promote Schwann cell myelination and motor function recovery by preserved neural tissue, and reduce glial scar after hemi-contusive cervical SCI, indicating a potential strategy for SCI treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...