Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(10)2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896907

RESUMEN

mRNA vaccines are a new class of vaccine that can induce potent and specific immune responses against various pathogens. However, the design of mRNA vaccines requires the identification and optimization of suitable antigens, which can be challenging and time consuming. Reverse vaccinology is a computational approach that can accelerate the discovery and development of mRNA vaccines by using genomic and proteomic data of the target pathogen. In this article, we review the advances of reverse vaccinology for mRNA vaccine design against SARS-CoV-2, the causative agent of COVID-19. We describe the steps of reverse vaccinology and compare the in silico tools used by different studies to design mRNA vaccines against SARS-CoV-2. We also discuss the challenges and limitations of reverse vaccinology and suggest future directions for its improvement. We conclude that reverse vaccinology is a promising and powerful approach to designing mRNA vaccines against SARS-CoV-2 and other emerging pathogens.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacunología/métodos , Proteómica , Vacunas de ARNm , Vacunas Sintéticas
2.
Vaccine ; 40(30): 3991-3998, 2022 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-35660036

RESUMEN

Shigella is a well-known etiological agent responsible for intestinal infection among children, the elderly, and immunocompromised people ranging from mild to severe cases. Shigellosis remains endemic in Malaysia and yet there is no commercial vaccine available to eradicate the disease. Iron is an essential element for the survival of Shigella within the host. Hence, it is required for regulating metabolic mechanisms and virulence determinants. Alteration of iron status in the extracellular environment directly triggers the signal in enteropathogenic bacterial, providing information that they are in a hostile environment. To survive in an iron-limited environment, molecular regulation of iron-binding proteins plays a vital role in facilitating the transportation and utilization of sufficient iron sources. Given the importance of iron molecules for bacterial survival and pathogenicity, this review summarizes the physiological role of iron-binding proteins in bacterial survival and their potential use in vaccine and therapeutic developments.


Asunto(s)
Disentería Bacilar , Shigella , Anciano , Proteínas Bacterianas/metabolismo , Niño , Humanos , Hierro/metabolismo , Proteínas de Unión a Hierro/metabolismo , Desarrollo de Vacunas
3.
Antibiotics (Basel) ; 10(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943720

RESUMEN

The emergence of nosocomial multidrug-resistant Klebsiella pneumoniae is an escalating public health threat worldwide. The prevalence of nosocomial infections due to K. pneumoniae was recorded up to 10%. In this systematic review and meta-analysis, which were conducted according to the guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis, 1092 articles were screened from four databases of which 47 studies fulfilled the selected criteria. By performing a random-effect model, the pooled prevalence of nosocomial multidrug-resistant K. pneumoniae was estimated at 32.8% (95% CI, 23.6-43.6), with high heterogeneity (I2 98.29%, p-value < 0.001). The estimated prevalence of this pathogen and a few related studies were discussed, raising awareness of the spread of multidrug-resistant K. pneumoniae in the healthcare setting. The emergence of nosocomial multidrug-resistant K. pneumoniae is expected to increase globally in the future, and the best treatments for treating and preventing this pathogen should be acknowledged by healthcare staff.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...